

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Validación estructural de viviendas informales construidas en Huancayo metropolitano hasta el año 2017

Antoni Junior Cutisaca Laura

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2020

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

AGRADECIMIENTOS

A Dios, por protegerme, guiar mi camino y permitirme ser parte de una familia sólida y unida.

A mis padres, Gicela y Luis, mi hermana Johanna, mi abuelita Soledad y mi tía Araceli, por su apoyo incondicional, su amor y ejemplo, los cuales me sirvieron de inspiración para desarrollar mi tesis.

A los docentes y jurados revisores de la E.A.P. de Ingeniería Civil de la Universidad Continental, por haber compartido sus conocimientos a lo largo de mi preparación profesional.

A mi asesor, Mg. Ing. Franz Estrada Porras, por el apoyo brindado y consejos para concluir mi tesis.

A todas las personas, que con un comentario positivo me animaron a seguir y no dejar pasar este momento clave de mi vida profesional; especialmente a la persona que estuvo alentándome en el tramo final muchas gracias.

DEDICATORIA

A Dios, por cuidar de mí persona, a mis padres, hermana, abuela y tía, quienes confiaron y estuvieron a mi lado dándome su apoyo día a día. ¡Don't stop believing!

ÍNDICE

AGRADECI	MIENTOS	i
DEDICATOR	RIA	. ii
ÍNDICE		iii
ÍNDICE DE I	FIGURAS	. vi
ÍNDICE DE ⁻	TABLAS	x
RESUMEN		xii
ABSTRACT)	κiii
INTRODUC	CIÓN	۷iv
CAPÍTULO I		. 1
PLANTEAM	IENTO DEL ESTUDIO	. 1
1.1 Pla	nteamiento y Formulación del Problema	. 1
1.1.1	Planteamiento del Problema	. 1
1.1.2	Formulación del Problema	
1.1.2.1		
1.1.2.2		
1.2 Obj	etivos	
1.2.1	Objetivo General	. 3
1.2.2	Objetivos Específicos	. 3
1.3 Jus	tificación e Importancia	4
1.4 Hip	ótesis y Descripción de Variable	. 5
1.4.1	Hipótesis General	. 5
1.4.2	Hipótesis Específicas	. 5
1.4.3	Variable	. 5
CAPÍTULO I	I	6
MARCO TEC	ÓRICO	6
2.1 Ant	ecedentes del Problema	6
2.1.1	Antecedentes Nacionales	. 6
2.1.2	Antecedentes Internacionales	. 8
2.2 Bas	ses Teóricas	10

2.2.1	1 A	Actividad Sísmica	. 10
2.	2.1.1	Interacción de las Placas de Nazca - Sudamericana y la Falla del Huaytapallana	10
2.	2.1.2	Filosofía del Diseño Sismorresistente y Normativa Empleada	. 13
2.2.2	2 V	/iviendas Informales	. 15
2.	2.2.1	Plan de Desarrollo Urbano de Huancayo del año 2006 al 2011	. 16
2.	2.2.2	Sistema Estructural Mixto	. 17
2.2.3 E.03		Procedimiento Sugerido para la Determinación de las Acciones Sísmicas – No eño Sismorresistente"	
2.	2.3.1	ETAPA 1: Peligro Sísmico	. 21
2.	2.3.2	ETAPA 2: Caracterización del Edificio	. 27
2.	2.3.3	ETAPA 3: Análisis Estructural	. 32
2.	2.3.4	ETAPA 4: Validación de la Estructura	. 39
2.2.4	4 A	Análisis de Muros Portantes	. 41
2.	2.4.1	Requisitos Estructurales Mínimos – Muro Portante	. 41
2.	2.4.2	Estructuración en Planta	. 42
2.	2.4.3	Control de Fisuración en Muros Portantes de Albañilería	. 43
2.	2.4.4	Resistencia al Corte del Edificio con Muros Portantes de Albañilería	. 44
2.2.5	5 A	Análisis Estructural mediante Software	. 45
2.	2.5.1	Modelamiento Estructural - ETABS v.16.2.1	. 45
2.	2.5.2	Análisis Estructural - ETABS v.16.2.1	. 52
2.3	Defin	ición de Términos Básicos	60
CAPÍTU	LO III.		62
METOD	OLOG	iÍA	62
3.1	Méto	do y Alcance de la Investigación	62
3.2	Diseñ	io de la Investigación	62
3.3	Pobla	ación y Muestra	62
3.3.1	1 P	Población	. 63
3.3.2	2 N	Лuestra	. 63
3.4	Técni	cas e Instrumentos de Recolección de Datos	64
3.4.1	1 T	écnicas de Recolección de Datos	. 64
3.4.2	2 lı	nstrumentos de Recolección de Datos	. 64
CAPÍTU	LO IV		67
ANÁLISI	IS EST	TRUCTURAL	67

4.1	Des	cripción General	67
4.3	1.1	Características Básicas	67
4.3	1.2	Tipologías Estructurales	69
4.2	Micr	ozonificación Sísmica de Huancayo Metropolitano	72
4.3	Fact	ores y Restricciones de Irregularidad	74
4.4	Caro	gas para el Análisis Estructural	77
4.4	4.1	Carga Muerta de los Acabados	77
4.4	4.2	Carga Muerta de la Tabiquería	77
4.4	4.3	Carga Muerta del Ladrillo de Techo	78
4.4	4.4	Carga Muerta del Parapeto de la Azotea	80
4.4	4.5	Cargas de la Escalera	80
4.4	4.6	Cargas del Tanque Elevado	82
4.5	Sepa	aración de Edificios	84
CAPÍT	ULO V	,	85
RESUI	LTADC	OS Y DISCUSIÓN	85
5.1	Res	ultados del Tratamiento y Análisis de la Información	85
5.2	1.1	Resultados del Tratamiento	85
	5.1.1.1	Desplazamientos Laterales - Vivienda de 2 Pisos	85
	5.1.1.2	Desplazamientos Laterales - Vivienda de 3 Pisos	87
	5.1.1.3	Desplazamientos Laterales - Vivienda de 4 Pisos	89
	5.1.1.4	Desplazamientos Laterales - Vivienda de 5 Pisos	91
5.3	1.2	Análisis de la Información	93
	5.1.2.1	Distorsiones de Entrepiso – Vivienda de 2 Pisos	93
	5.1.2.2	Distorsiones de Entrepiso – Vivienda de 3 Pisos	94
	5.1.2.3	Distorsiones de Entrepiso – Vivienda de 4 Pisos	95
	5.1.2.4	Distorsiones de Entrepiso – Vivienda de 4 Pisos	97
	5.1.2.5	Análisis de Muros Portantes	98
5.2	Disc	usión de Resultados	101
CONC	LUSIO	NES	102
RECO	MEND	ACIONES	103
REFE	RENCI	AS BIBLIOGRÁFICAS	104
ANEX	OS		107

ÍNDICE DE FIGURAS

Figura 1: Esquema Tectónico que Explica la Interacción entre las Placas Nazca y
Sudamericana (Subducción). Fuente: Evaluación del Peligro Asociado a los Sismos y
Efectos Secundarios en Perú, IGP-20141
Figura 2: Vivienda Autoconstruida, se puede apreciar los muros portantes en la dirección
longitudinal y en la transversal que es la fachada solo pórticos. Fuente: Elaboración propia.
4
Figura 3: Mapa Epicentral de Grandes Sismos Históricos Ocurridos en Perú, Período 1500
a 2014. Fuente: Evaluación del Peligro Asociado a los Sismos y Efectos Secundarios en
Perú11
Figura 4: Escarpe de la Falla de Huaytapallana. Fuente: Foto tomada por José Macharé
Ordoñez - Síntesis Descriptiva del Mapa Neotectónico 2008 - INGEMMET12
Figura 5: Falla activa de Huaytapallana. Fuente: INGEMMET, XVIII Encuentro Científico
Internacional "Gustavo Gonzales Rengifo" – Verano 2011
Figura 6: Filosofía Del Diseño Sismorresistente. Fuente: Norma Técnica E.030 - 201914
Figura 7: Caída del Techo en Salón de Recepciones dejó 6 muertos, Huancán. Fuente: El
Comercio, 14 de Octubre del 201916
Figura 8: Usos del Suelo en Huancayo Metropolitano. Fuente: Plan de Desarrollo Urbano
de Huancayo del año 2006 al 201117
Figura 9: Sistema Estructural Mixto, Pórticos en la Dirección Transversal y Albañilería
Confinada en la Dirección Longitudinal. Fuente: Elaboración Propia
Figura 10: Diagrama del Procedimiento Sugerido para la Determinación de las Acciones
Sísmicas - Norma Técnica E.030 "Diseño Sismorresistente" – 201920
Figura 11: Mapa de Peligro Sísmico para el Perú, CRISIS-2007 Fuente: Re-Evaluación del
Peligro Sísmico Probabilístico para el Perú, IGP-Lima 201422
Figura 12: Espectro de Pseudo Aceleraciones de la Norma Técnica E.030. Fuente:
Seminario - Actualización de la Norma Técnica Peruana E.030, marzo de 201626
Figura 13: Deformaciones en los elementos estructurales de un entrepiso con diafragma
rígido en su mismo plano ante un desplazamiento el eje X. Fuente: Dinámica Estructural
Aplicada al Diseño Sísmico, García Reyes, Luis Enrique – 199833
Figura 14: Modelo Pseudo Tridimensional con 3 GDL en cada entrepiso34
Figura 15: Distribución de la Fuerza Sísmica en Altura, ubicada en el CM de cada entrepiso.
36

Figura 16: Espectro Inelástico de Pseudo Aceleraciones37
Figura 17: Primer, Segundo, Tercer y Cuarto Modo de Vibración de un Pórtico38
Figura 18: Diagrama de Fuerza Sísmica vs Desplazamiento Lateral40
Figura 19: Separación entre Edificios. Fuente: Norma Técnica E.030 "Diseño
Sismorresistente" – 201941
Figura 20: Torre Paradox de 60 Pisos Ubicada en la Ciudad de México, Estructura Rea
(Izquierda) y Modelado en ETABS elaborado por la Empresa Capacítate Estructuras
(Derecha)45
Figura 21: Modelo Real vs Modelo Idealizado46
Figura 22: ETABS - Ubicación de Vigas Modeladas bajo el Eje de Entrepiso47
Figura 23: ETABS - Características del material de Concreto Armado con una Resistencia
a la Compresión de 175kgf/cm² (17,5MPa)47
Figura 24: ETABS - Características del material de Albañilería Confinada con una
Resistencia a la Compresión de 35kgf/cm² (3,5MPa)48
Figura 25: ETABS - Características del material de Acero de Refuerzo - Grado 6048
Figura 26: ETABS - Definición de la Viga de 25x50cm49
Figura 27: ETABS - Definición de la Columna de 25x40cm
Figura 28: ETABS - Definición de la Losa Aligerada Unidireccional de 20cm. como
Elemento Membrana50
Figura 29: ETABS - Definición de la Losa Maciza Bidireccional51
Figura 30: ETABS - Definición del Muro Portante de Albañilería Confinada51
Figura 31: ETABS - Vista en Planta (Izquierda) y Vista 3D (Derecha) de la Vivienda Informa
CH-152
Figura 32: Definición y Asignación de Diafragmas Rígidos en cada Entrepiso de la Vivienda
CH-153
Figura 33: Asignación de Brazos Rígidos en la Estructura de Forma Automática con un
Factor de 0.554
Figura 34: Asignación de la Carga Muerta del Parapeto en la Azotea como una Carga por
Unidad de Longitud54
Figura 35: ETABS - Definición de Patrones de Carga56
Figura 36: ETABS - Definición del Patrón de Carga Sísmica para la Dirección X con el 5%
de Excentricidad Accidental Positiva56
Figura 37: ETABS - Definición del Peso Sísmico56
Figura 38: Definición del Espectro de Pseudo Aceleraciones en la Dirección Longitudina
(Izquierda) y para la Dirección Transversal (Derecha)57

Figura 39: Definición del Análisis Modal con un Mínimo Número de 3 Modos	57
Figura 40: Definición del Caso de Carga para el Análisis Dinámico Modal Espectra	al en la
Dirección Longitudinal (Izquierda) y para la Dirección Transversal (Derecha)	58
Figura 41: ETABS - Tablas Dinámicas con Datos de la Estructura y Resultados del A	∖nálisis
Estructural (Izquierda) y Tabla de Máximos Desplazamientos de Entrepiso (Derecha	a)58
Figura 42: Gráfica de las Fuerzas Sísmicas para un Análisis Estructural Estático	o en la
dirección X (Izquierda) y la Gráfica de los Máximos Desplazamientos en cada Niv	el para
un Análisis Estructural Dinámico en la misma Dirección (Derecha)	59
Figura 43: Diagrama de Fuerzas Cortantes (Izquierda) y la Gráfica de las Máximas [Derivas
en cada Nivel para un Análisis Estructural Dinámico en la Dirección X (Derecha)	59
Figura 44: Ficha de Campo para cada Vivienda Informal	65
Figura 45: Año de Construcción de las Viviendas Informales y Actualización de la	Norma
E.030	68
Figura 46: Número de Pisos de las Viviendas Informales	69
Figura 47: Modelado en 3D de la Vivienda Informal en el Software ETABS	70
Figura 48: Espesor de los Muros Portantes de las Viviendas Informales	71
Figura 49: Dirección de la Losa Aligerada Unidireccional	72
Figura 50: Regularidad Estructural de las Viviendas Informales	75
Figura 51: Planos en Planta de la vivienda en la HU-1 (Parte Superior Izquierda), la vi	ivienda
(Parte Superior Derecha), (Parte Inferior Izquierda) y (Parte Inferior Derecha)	77
Figura 52: Idealización Estructural de la Escalera	81
Figura 53: Asignación de la Carga Muerta debida al Peso de la Escalera y del Para	peto en
la Azotea	82
Figura 54: Vista en Planta (Izquierda) y Vista 3D (Derecha) del Área donde será As	ignada
las Cargas debido al Tanque Elevado en la Vivienda Informal HU-4	83
Figura 55: Ficha Técnica del Tanque Rotoplas para Agua. Fuente: Rotoplas	83
Figura 56: Inexistente Separación entre Viviendas.	84
Figura 57: Vivienda Informal de 2 Pisos (HU-5), Vista en Planta (Izquierda) y Vi	sta 3D
(Derecha)	86
Figura 58: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Dos	s Pisos
+ Azotea (HU-5)	87
Figura 59: Vivienda Informal de 3 Pisos (HU-3), Vista en Planta (Izquierda) y Vi	sta 3D
(Derecha)	88
Figura 60: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Tres	s Pisos
+ Azotea (HU-3)	89

Figura 61: Vivienda Informal de 4 Pisos (ET-5), Vista en Planta (Izquierda) y Vista 3D
(Derecha)90
Figura 62: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cuatro
Pisos + Azotea (ET-5)91
Figura 63: Vista 3D de la Vivienda Informal de 5 Pisos (CH-4)92
Figura 64: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cinco Pisos
+ Azotea (CH-4)93
Figura 65: Distorsiones Máximas de Entrepiso - Vivienda de Dos Pisos + Azotea (HU-5)
94
Figura 66: Distorsiones Máximas de Entrepiso - Vivienda de Tres Pisos + Azotea (HU-3)
95
Figura 67: Distorsiones Máximas de Entrepiso - Vivienda de Cuatro Pisos + Azotea (ET-5)
96
Figura 68: Distorsiones Máximas de Entrepiso - Vivienda de Cinco Pisos + Azotea (CH-4)
98

ÍNDICE DE TABLAS

Tabla 1: Dimensión e Indicadores de la Variable.	5
Tabla 2: Características del material de Concreto	18
Tabla 3: Características del material de Acero de Refuerzo - Grado 60	19
Tabla 4: Características del material de Albañilería Confinada	19
Tabla 5: Factores de Zona "Z"	23
Tabla 6: Clasificación de los Perfiles de Suelo	23
Tabla 7: Aplicación y Limitaciones del Ensayo SPT	24
Tabla 8: Factor de Suelo "S"	24
Tabla 9: Períodos T₀ y T∟	25
Tabla 10: Registros Sísmicos para la Obtención del Espectro de Pseudo Aceleracio	nes.
	25
Tabla 11: Coeficientes para la Estimación del Período Fundamental de Vibración de	una
Estructura	26
Tabla 12: Categoría de las Edificaciones y Factor "U"	27
Tabla 13: Valores de Máximas aceleraciones estimadas para las capitales de departame	ento
de Perú (referencia, Plaza de Armas)	28
Tabla 14: Categoría y Sistema Estructural de las Edificaciones	28
Tabla 15: Sistemas Estructurales	29
Tabla 16: Irregularidades Estructurales en Altura.	30
Tabla 17: Irregularidades Estructurales en Planta	31
Tabla 18: Categoría y Regularidad de las Edificaciones	32
Tabla 19: Estimación de Peso Sísmico (P)	34
Tabla 20: Límites para la Distorsión del Entrepiso.	40
Tabla 21: Cargas Vivas Mínimas Repartidas	55
Tabla 22: Base de Datos de las Viviendas Informales en Huancayo Metropolitano	63
Tabla 23: Confiabilidad del Estudio - IBM SPSS 25 Statistics	66
Tabla 24: Año de Construcción de las Viviendas Informales y Actualización de la No	rma
E.030.	67
Tabla 25: Número de Pisos de las Viviendas Informales	68
Tabla 26: Espesor de los Muros Portantes de las Viviendas Informales	70
Tabla 27: Dirección de la Losa Aligerada Unidireccional de las Viviendas Informales	71
Tabla 28: Datos de Sondeos en Huancavo Metropolitano.	73

Tabla 29: Datos de EMS de Diversas Edificaciones - Ensayo de Corte Directo ASTM D-
3080, Huancayo Metropolitano74
Tabla 30: Regularidad Estructural de las Viviendas Informales75
Tabla 31: Viviendas Informales con Irregularidad de Esquinas Entrantes76
Tabla 32: Cargas Mínimas Repartidas Equivalentes a la Tabiquería78
Tabla 33: Pesos Unitarios - Losas Aligeradas Armadas en una Sola Dirección de Concreto
Armado79
Tabla 34: Carga Muerta Calculada debido al Peso de los Ladrillos de Techo de la Losa
Aligerada Unidireccional79
Tabla 35: Pesos Unitarios - Material de Albañilería80
Tabla 36: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Dos Pisos
+ Azotea (HU-5)86
Tabla 37: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Tres Pisos
+ Azotea (HU-3)88
Tabla 38: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cuatro
Pisos + Azotea (ET-5)90
Tabla 39: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cinco Pisos
+ Azotea (CH-4)92
Tabla 40: Distorsiones Máximas de Entrepiso - Vivienda de Dos Pisos + Azotea (HU-5).94
Tabla 41: Distorsiones Máximas de Entrepiso - Vivienda de Tres Pisos + Azotea (HU-3).
95
Tabla 42: Distorsiones Máximas de Entrepiso - Vivienda de Cuatro Pisos + Azotea (ET-5).
96
Tabla 43: Distorsiones Máximas de Entrepiso - Vivienda de Cinco Pisos + Azotea (CH-4).
97
Tabla 44: Análisis de Muros Portantes - Vivienda de Dos Pisos + Azotea (HU-5)99
Tabla 45: Análisis de Muros Portantes - Vivienda de Tres Pisos + Azotea (HU-3)99
Tabla 46: Análisis de Muros Portantes - Vivienda de Cuatro Pisos + Azotea (ET-5)100
Tabla 47: Análisis de Muros Portantes - Vivienda de Cinco Pisos + Azotea (CH-4)100

RESUMEN

La presente tesis consiste en la validación estructural de viviendas informales ubicadas en Huancayo Metropolitano, las cuales poseen un sistema estructural mixto: en el eje transversal, poseen supuestos pórticos y en el eje longitudinal, muros de albañilería confinada. Este tipo de construcciones es muy usual en este lugar debido a la informalidad que se tiene por evitar trámites tediosos al momento de solicitar una licencia de construcción. Aparte del sistema estructural, se pueden tener mayores errores constructivos referentes a la mano de obra no calificada y los materiales de baja calidad, con lo cual una vivienda puede llegar a fallar frente a un evento sísmico de gran intensidad.

Para poder evaluar este sistema estructural, se escogieron por conveniencia 15 viviendas de los distritos de Chilca, El Tambo y Huancayo. El Plan de Desarrollo Urbano de Huancayo se viene respetando a la actualidad, pero en años anteriores no y los ciudadanos dividían sus terrenos de una forma irregular. Como parte de la información recolectada de las viviendas, se tuvo planos de arquitectura y estructuras, y se pudo identificar que, en su mayoría, no evalúan cada vivienda y simplemente usan el criterio de medidas estándar.

El análisis estructural fue ejecutado con el uso del software ETABS para obtener los desplazamientos, rigideces, derivas y otros resultados necesarios para poder validar cada una de las viviendas, concluyendo que el sistema estructural de pórticos no cumple con la rigidez requerida en la dirección transversal; por el contrario, en la dirección longitudinal los muros portantes de albañilería confinada aportan una gran cantidad de rigidez a la estructura y por lo tanto la validación estructural es incorrecta.

Palabras Clave: Vivienda Informal, Sismo, Comportamiento Estructural, Análisis Sísmico Lineal, Factores de Irregularidad, Distorsión de Entrepiso.

ABSTRACT

This thesis consists of the structural validation of informal houses located in Huancayo Metropolitano, this informal houses have a mixed structural system: on the transverse axis it has porticos and on the longitudinal axis confined masonry walls. This type of construction is very common in this place bevause people usually avoid tedious procedures when requesting a construction license. Apart from the structural system, there can be greater construction errors regarding unskilled labor and low-quality materials, which means that a house can fail during a seismic event of great intensity.

In order to evaluate this structural system, I choosed for convenience 15 homes from the districts: Chilca, El Tambo and Huancayo. The Urban Development Plan of Huancayo has been respecting today but that in previous years no and citizens divided their land in a irregular shape. The information that I collected from the dwellings were their architectural plans and structures, it was possible to identify that most of them don't evaluate each dwelling and simply use the standard measurement criteria.

The structural analysis was carried out with the software ETABS to obtain the displacements, rigidities, drifts and necessary results to be able to validate each one of the houses. Concluding that the gantry structural system doesn't meet the stiffness required in the transverse direction, on the contrary in the longitudinal direction, the bearing walls of confined masonry provide a great amount of stiffness to the structure and therefore the structural validation is incorrect.

Key Words: Informal Housing, Earthquake, Structural Behavior, Linear Seismic Analysis, Irregularity Factors, Floor Distortion.

INTRODUCCIÓN

Las viviendas informales en Huancayo son fáciles de visualizar por donde uno va caminando y ahí el problema de la presente tesis ¿Estas viviendas tendrán la rigidez necesaria frente a un evento sísmico? Esta pregunta se consolida con el hecho de ver personal que construye a su criterio propio, una falta de supervisión ingenieril y materiales de poca calidad. Huancayo Metropolitano va creciendo demográficamente y, por ende, la necesidad de viviendas es pan de cada día, además se encuentra en una zona medianamente sísmica y teniendo la presencia de la Falla del Huaytapallana puede ocurrir un sismo en el momento menos pensado; el sismo es inevitable, pero sí se puede advertir a la población y tener viviendas sismorresistentes que pueden hacer frente o mitigar los daños materiales y humanos que se pudieran dar.

La tesis aborda el análisis sísmico de 15 viviendas informales tanto para el análisis de fuerzas equivalentes como el dinámico modal espectral indicado paso a paso en las páginas de la Norma Técnica E.030 "Diseño Sismorresistente" y con los resultados obtenidos realizar su validación estructural desde el control de desplazamientos laterales hasta la separación entre edificios. Las viviendas seleccionadas cuentan con un sistema estructural mixto muy común es esta parte del Perú, el cual consta de pórticos en uno de sus ejes y en el otro eje muros portantes de albañilería confinada; los planos fueron obtenidos de terceros.

Esta tesis está conformada por 5 capítulos, partiendo del capítulo I sobre el planteamiento y formulación del problema, los objetivos, justificación e importancia y la descripción de la variable; el capítulo II, por su parte, detalla el marco teórico, los antecedentes nacionales e internaciones, bases teóricas y definición de términos básicos; continúa el capítulo III, donde se describe la metodología, diseño, población, muestra y técnicas e instrumentos de recolección de datos; en el capítulo IV se desarrolla el análisis estructural de las 15 viviendas informales; y, para culminar, el capítulo V que tiene por contenido los resultados y discusión de ellos con los antecedentes planteados. Por último, se redactan las conclusiones a las que se llegaron mediante la tesis y la bibliografía empleada en su elaboración.

CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO

1.1 Planteamiento y Formulación del Problema

1.1.1 Planteamiento del Problema

Uno de los países altamente sísmicos es Perú, ya que se encuentra ubicado en la zona de subducción de la Placa de Nazca y la Placa Sudamericana (1) (Ver Figura 1); como indica la Norma Técnica E.030 "Diseño Sismorresistente", divide el territorio en cuatro zonas en función al porcentaje de la aceleración de la gravedad máxima del terreno; los distritos de Huancayo Metropolitano ocupan la zona tres; por ello, al poseer una amenaza sísmica, es necesario evaluar las viviendas informales que ahí se encuentran.

Figura 1: Esquema Tectónico que Explica la Interacción entre las Placas Nazca y Sudamericana (Subducción). Fuente: Evaluación del Peligro Asociado a los Sismos y Efectos Secundarios en Perú, IGP-2014.

A la actualidad, se tiene un silencio sísmico moderadamente largo. En Huancayo Metropolitano, se puede observar que existe una gran cantidad de viviendas informales, en las cuales los parámetros mínimos de estructuración que exige la norma no son válidos y además se hace uso de ladrillos artesanales, los cuales no superan los requisitos mínimos que exige el Reglamento Nacional de Edificaciones.

Lo que se busca es realizar un análisis estructural estático y dinámico modal espectral en el régimen elástico lineal a viviendas informales; para lo cual, se asumirá que poseen un sistema estructural de pórticos en la dirección transversal, debido a que no se tienen uniones muy rígidas entre las vigas y columnas; y un sistema estructural de albañilería confinada en la dirección longitudinal ubicada usualmente en los linderos de la vivienda. Con la ayuda de los planos de cada vivienda previamente elaborados por terceros en los tres distritos que conforman Huancayo Metropolitano y con los resultados obtenidos de cada análisis estructural, se procede a determinar si cada vivienda es válida, para lo cual debe cumplir los requisitos de regularidad y rigidez indicado en la Norma E.030.

Se han realizado algunos proyectos sobre pabellones de hasta dos pisos en instituciones educativas que utilizaron un sistema estructural mixto y que fueron diseñados para cumplir con los parámetros de las normas E.030, E.060 y E.070 del Reglamento Nacional de Edificaciones; sin embargo, dichos parámetros no son respetados en las viviendas informales.

1.1.2 Formulación del Problema

1.1.2.1 Problema General

¿Se tendrá una correcta validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017?

1.1.2.2 Problemas Específicos

- ¿Cuáles son los resultados de la validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017, realizada mediante el análisis estructural de fuerzas equivalentes?
- ¿Cuáles son los resultados de la validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017, realizada mediante el análisis estructural dinámico modal espectral?

1.2 Objetivos

1.2.1 Objetivo General

Realizar la validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017.

1.2.2 Objetivos Específicos

- Validar estructuralmente viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 mediante el análisis estructural de fuerzas equivalentes.
- Validar estructuralmente viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 mediante el análisis estructural dinámico modal espectral.

1.3 Justificación e Importancia

El territorio peruano presenta un registro importante de sismos, así como los daños que conllevaron a pérdidas humanas y materiales. Las construcciones que se tienen en los distritos de Huancayo, El Tambo y Chilca, al estar ubicadas en una zona sísmica tipo 3, podrían sufrir dichos daños y más aún si son viviendas construidas informalmente.

El propósito de la realización de esta tesis es validar el comportamiento estructural de 15 viviendas informales que poseen un sistema estructural mixto bajo los parámetros que indican las normas E.020, E.030, E.060 y E.070 del Reglamento Nacional de Edificaciones. Estas viviendas presentan en la dirección transversal pórticos con columnas muy pequeñas y en la dirección longitudinal muros portantes endentados de albañilería confinada.

En Huancayo Metropolitano, se pueden observar viviendas construidas informalmente refiriéndose al hecho de no contar con un ingeniero que guíe el proceso constructivo y solo construyan en base a los planos elaborados, como también el hecho de elaborar planos sin conocimientos mínimos de estructuración ni validando los parámetros que exigen las normas del R.N.E. (Ver Figura 2); por ello, esta tesis servirá en la formación profesional del autor y a la población de los distritos mencionados, ya que con los resultados obtenidos se dará de conocimiento las posibles consecuencias que tendrán este tipo de construcciones ante un posible sismo severo y así puedan tomar mejores decisiones antes de construir.

Figura 2: Vivienda Autoconstruida, se puede apreciar los muros portantes en la dirección longitudinal y en la transversal que es la fachada solo pórticos. Fuente: Elaboración propia.

1.4 Hipótesis y Descripción de Variable

1.4.1 Hipótesis General

La validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 resulta incorrecta.

1.4.2 Hipótesis Específicas

- Los resultados del análisis estructural de fuerzas equivalentes en viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 concluyen una validación estructural incorrecta.
- Los resultados del análisis estructural dinámico modal espectral en viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 concluyen una validación estructural incorrecta.

1.4.3 Variable

Validación Estructural:

La validación estructural es un proceso definido por la Norma E.030 "Diseño Sismorresistente", el cual menciona que mediante un Análisis Estructural Lineal a las viviendas informales seleccionadas se debe cumplir los siguientes puntos: Revisar los factores de irregularidad, verificar las restricciones a la irregularidad, determinar desplazamientos laterales, validar la distorsión admisible y calcular la separación entre edificios (Ver Tabla 1).

Tabla 1: Dimensión e Indicadores de la Variable.

DIMENSIÓN	INDICADORES
Análisis Estructural (Capítulo IV - Norma Técnica E.030 -	Análisis Estático o de Fuerzas Equivalentes
RNE)	Análisis Dinámico Modal Espectral

CAPÍTULO II MARCO TEÓRICO

2.1 Antecedentes del Problema

2.1.1 Antecedentes Nacionales

■ En la tesis: "VULNERABILIDAD SÍSMICA DE CENTROS EDUCATIVOS DE HUANCAYO METROPOLITANO", se tuvo como objetivo realizar la validación estructural de 4 módulos educativos mediante un análisis dinámico; utilizando el diseño no experimental con un método científico y una muestra de 69 centros educativos: 47 del nivel primario y 22 del nivel secundario, que fueron analizados mediante el software ETABS. Su investigación concluye lo siguiente:

Al haber analizado cuatro módulos críticos mediante el análisis dinámico modal espectral, se obtuvo que en el eje X, compuesto por pórticos de concreto armado, se supera la deriva límite de 0,007 y, al contrario, en el eje Y, de muros de albañilería, no superan la deriva límite de 0,005 debido al gran aporte de rigidez de los muros estructurales. (2)

El aporte de esta tesis fue que el número de pisos no es una característica para poder definir si una estructura es o no vulnerable, ya que la característica que más incide es el tipo de sistema estructural. En la tesis: "EVALUACIÓN DEL COMPORTAMIENTO ESTRUCTURAL DE UNA VIVIENDA AUTOCONSTRUIDA EL AÑO 2012, SECTOR CAMINO REAL II, CALLE TRES MARÍAS – PROVINCIA DE JAÉN", se tuvo como objetivo la evaluación estructural de una vivienda autoconstruida; utilizando el diseño no experimental con un método científico y como única muestra la vivienda mencionada. Su investigación concluye lo siguiente:

La deriva máxima resultante del análisis estructural fue de 0,008 y el desplazamiento máximo en el punto de control establecido fue de 1,79cm, lo cual no cumple con lo establecido en la Norma E.030 referido a la deriva máxima en estructuras de albañilería confinada y se infiere que la estructura fallará por efectos de rigidez en la dirección X-X a comparación de la dirección Y-Y que sí cumple este requisito con una deriva máxima de 0,001. (3)

El aporte de esta tesis fue que al tener un deficiente comportamiento estructural, en estas viviendas autoconstruidas puede producirse una anomalía estructural, lo que conlleva a ser reforzada para evitar daños futuros.

■ En la tesis: "VULNERABILIDAD SÍSMICA APLICANDO EL MÉTODO DE BENEDETTI Y PETRINI EN UNA INSTITUCIÓN EDUCATIVA, EN JAÉN, AÑO 2019", se tuvo como objetivo realizar un análisis dinámico modal espectral del módulo VI de la IE Alfonso Villanueva Pinillos, mediante el uso del software ETABS para verificar el cumplimiento de las derivas de entrepiso; utilizando el diseño no experimental y una muestra de 3 módulos de la Institución Educativa haciendo uso de las técnicas de fichaje y encuesta. Su investigación tiene por conclusión lo siguiente:

Habiendo realizado el análisis dinámico modal espectral del módulo VI con el software ETABS, se obtuvieron resultados de una deriva máxima en la dirección X-X de 0,005906 y en la dirección Y-Y de 0,002474; estos resultados son inferiores a los límites de distorsión establecidos en la Norma E.030 que indica para pórticos es 0,007 y para la albañilería de 0,005. (4)

El aporte de esta tesis fue que luego de evaluar a la institución educativa se obtuvieron resultados negativos respecto al análisis estructural, debido a una mala estructuración, considerando que es necesario un reforzamiento para así evitar daños en una edificación de tipo esencial.

2.1.2 Antecedentes Internacionales

En la tesis: "EVALUACIÓN TÉCNICA – CONSTRUCTIVA DE VIVIENDA DE INTERÉS SOCIAL EN EL DISTRITO METROPOLITANO DE QUITO CASO DE APLICACIÓN: CIUDAD BICENTENARIO - POMASQUI", se tuvo como objetivo evaluar si los bloques de viviendas existentes con sistema de pórticos y losas como también con sistema de mampostería estructural cumplen con la Norma Ecuatoriana de Construcción NEC referido al control de derivas de piso; utilizando el diseño no experimental y como muestra el bloque de seis viviendas de tipo C41-P9 (pórticos y losas) y también las viviendas tipo C58SG, que consta de un grupo de dos viviendas (mampostería estructural) haciendo uso del software Robot Structural Analysis Profesional de AutoDesk. Su investigación concluye lo siguiente:

Las viviendas del tipo C41-P9 dieron un porcentaje de deriva de piso que cumple con el rango requerido siendo inferior al 2% establecido por la Norma, teniendo una deriva máxima de 0,0100 en la dirección Y del tercer piso y por otro lado las viviendas tipo C58SG también cumplen con no exceder el 1% establecido para estructuras de mampostería con una deriva máxima de 0,000237 en el tercer piso en la dirección Y. (5)

El aporte de esta tesis fue que el tipo de suelo es un factor que influye en la estructuración de una vivienda, ya que al tener una baja capacidad admisible no se podría incrementar el peso de la edificación; por lo tanto, se debería reforzar estas estructuras para evitar pérdidas materiales y humanas.

• En la tesis: "ANÁLISIS COMPARATIVO DE RESPUESTA SÍSMICA DE VIVIENDA DE DOS PISOS DE PÓRTICOS RESISTENTES A MOMENTOS VERSUS DE MURO PORTANTE", se tuvo como objetivo el modelamiento y análisis estructural de los dos sistemas estructurales planteados para verificar el comportamiento de las estructuras; utilizando el diseño no experimental y como muestra una vivienda de dos pisos con cada uno de los sistemas estructurales. Su investigación concluye lo siguiente:

Se obtuvo un desplazamiento lateral en el sistema estructural de pórticos debido a la fuerza sísmica para el eje X de 0,0125m en comparación a la del sistema estructural de muros portantes con un 0,000604m y para el eje Y los pórticos obtuvieron un valor de 0,0245m comparado con 0,000297m en los muros portantes; por lo tanto, se observa que la vivienda de muros portantes tiene mayor resistencia sísmica que el de pórticos, debido a su rigidez y forma de trabajo tipo cajón de sus elementos. (6)

El aporte de esta tesis fue que es primordial considerar la necesidad de que el profesional posea un adecuado criterio técnico que permita realizar un correcto análisis estructural y además el sistema de muros portantes es afectado en menor proporción por fuerzas sísmicas.

■ En la tesis: "EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA, ANÁLISIS ESTRUCTURAL Y DISEÑO DEL REFORZAMIENTO DE UNA VIVIENDA DE TRES PISOS UBICADA EN EL NORTE DE QUITO - ECUADOR", se tuvo como objetivo modelar la edificación en un software computacional analizando su comportamiento mediante un análisis lineal (modal espectral); utilizando el diseño no experimental con un método científico y como muestra la vivienda en mención, analizada mediante hojas de cálculo Excel y el software SAP2000. Su investigación concluye lo siguiente:

Al tratarse de una construcción informal, posee elementos estructurales que la convierten en una estructura frágil, por lo que el sistema estructural está dado por la mampostería de relleno y no por los pórticos; por este punto al hacer el chequeo de derivas en el modelo sin

mampostería se obtuvo una deriva máxima permisible de 0,02, solo considerando los pórticos; en cambio incluyendo la mampostería una deriva 0.005, las cuales se encuentran dentro del rango permitido por la NEC-SE-DS. (7)

El aporte de esta tesis fue que al evaluar la vivienda informal el sistema estructural resistente no está dado por los pórticos, sino por la mampostería de relleno, aportando una mayor masa y rigidez a la estructura y reduciendo su capacidad de deformación.

2.2 Bases Teóricas

2.2.1 Actividad Sísmica

2.2.1.1 Interacción de las Placas de Nazca - Sudamericana y la Falla del Huaytapallana

En el litoral peruano, se tiene un movimiento convergente de dos placas tectónicas: una oceánica (Nazca) y una continental (Sudamericana), que llevan al proceso de subducción; la primera se va hundiendo por debajo de la segunda respectivamente, lo cual provocó en el Perú una cantidad de sismos históricos de gran magnitud, los que se encuentran en gran proporción en las regiones centro y sur. El Instituto Geofísico Peruano elaboró un mapa epicentral de grandes sismos históricos desde el año 1500 al 2014 (1), donde con círculos rojos se ubican sus epicentros, como es el caso de la región Junín en el año 1969 y además estos lugares serán afectados por sismos frecuentemente porque continúan acumulando energía (Ver Figura 3). (8)

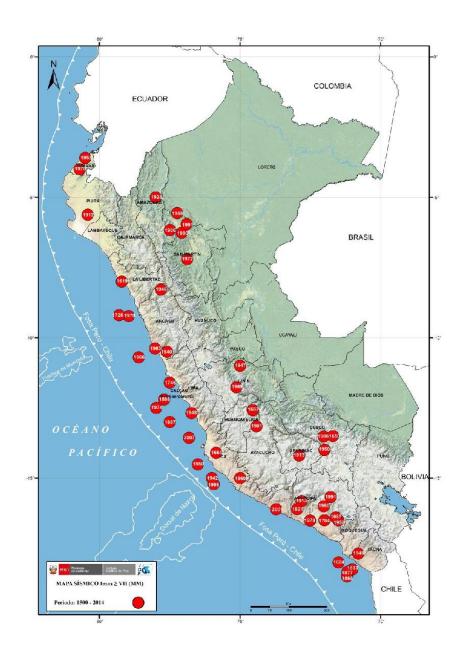


Figura 3: Mapa Epicentral de Grandes Sismos Históricos Ocurridos en Perú, Período 1500 a 2014. Fuente: Evaluación del Peligro Asociado a los Sismos y Efectos Secundarios en Perú.

El IGP posee una estación en Huayao, ubicada cerca de Huancayo, en donde, entre los años 1985 y 1990, se realizó un estudio de la falla geológica ubicada al pie de los nevados de la cordillera del Huaytapallana, aproximadamente a 4500 msnm (Ver Figura 4); se sabe que en la Incontrastable el último evento sísmico ocurrido fue el 1 de octubre de 1969, a las 05:05:43 horas, donde murieron 130 personas y heridos en cantidad considerable. Según el "Catálogo General de Isosistas para Sismos Peruanos" del Instituto Geofísico

Peruano (IGP), indica que se tuvo una magnitud del orden de 6,2Mw (Magnitud Momento) a una profundidad de 43Km (9); a la fecha ya van siendo 51 años de silencio sísmico.

Figura 4: Escarpe de la Falla de Huaytapallana. Fuente: Foto tomada por José Macharé Ordoñez – Síntesis Descriptiva del Mapa Neotectónico 2008 – INGEMMET.

Se sabe que se hacen monitoreos en estaciones de Ayacucho, Pucallpa, Cusco y Huánuco, pero se encuentran muy alejadas del lugar; además, dicho estudio indica que existe mucha microsismicidad asociada a las fallas que están en la región central como la del propio Huaytapallana, de San Ramón, del Mantaro y de Pampas; eso indica que se encuentran activas, pero lo que no se sabe es cuál está más propensa a desencadenar un sismo. (10)

En el año 2009, la Dirección de Geología Ambiental y Riesgo Geológico – INGEMMET presentó el boletín número 40 serie C, el cual llevaba por nombre Síntesis Descriptiva del Mapa Neotectónico 2008 – Geodinámica e Ingeniería Geológica, donde da a conocer detalles respecto a la Falla Huaytapallana con un desplazamiento vertical del segmento norte de 2 m y el segmento sur de 1,80 m, así también un desplazamiento horizontal siniestral de 0.70 m, estudio realizado por

los científicos Philip y Negar en el año 1977 (Ver Figura 5). Esta falla fue reactivada durante los sismos de julio y octubre de 1969. (11)

Figura 5: Falla activa de Huaytapallana. Fuente: INGEMMET, XVIII Encuentro Científico Internacional "Gustavo Gonzales Rengifo" – Verano 2011.

2.2.1.2 Filosofía del Diseño Sismorresistente y Normativa Empleada

La filosofía del Diseño Sismorresistente vigente en el Perú al año 2019 indica tres puntos importantes para diseñar edificaciones seguras ante un sismo. Parte del punto de evitar la pérdida de vidas humanas, así como la continuidad del funcionamiento de los servicios básicos que son el sistema de agua potable, desagüe o alcantarillado y eléctrico; por último, que la edificación puede tener daños mínimos, pero no colapsar (Ver Figura 6). (12)

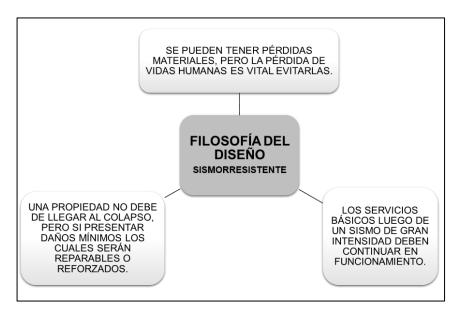


Figura 6: Filosofía Del Diseño Sismorresistente. Fuente: Norma Técnica E.030 - 2019.

La tesis será realizada mediante el uso de las siguientes normas del Reglamento Nacional de Edificaciones:

- Norma Técnica E.020-2006 "Cargas", documento que brinda las cargas muertas, cargas vivas y cargas vivas de techo que serán asignadas a la estructura; además de los pesos unitarios para los cálculos necesarios como son el peso volumétrico del concreto armado, el concreto simple, las unidades de albañilería de cocidas sólidas y huecas, y el peso propio de las losas aligeradas armadas en una sola dirección. Cabe resaltar el uso de la Norma Técnica E.020 del año 1985 para el peso equivalente de las tabiquerías internas de la edificación. (13)
- Norma Técnica E.030-2019 "Diseño Sismorresistente", norma que nos da los pasos a seguir para un análisis estructural tanto estático y dinámico modal espectral y con ello poder validar una estructura con el fin de determinar si la estructura analizada cumple con los requisitos establecidos de regularidad, así como la rigidez necesaria ante un evento sísmico. (12)
- Norma Técnica E.060-2009 "Concreto Armado", de aquí podemos obtener las fórmulas de las características del concreto armado

como son el módulo de elasticidad del concreto (EC), el módulo de rigidez al esfuerzo cortante del concreto (GC), módulo de elasticidad del acero (ES). Además de obtener los recubrimientos mínimos para cada elemento estructural y las disposiciones especiales para el diseño sísmico en el capítulo 21, tales como la resistencia mínima a la compresión del concreto de 21Mpa (f´c=210kgf/cm² aproximadamente). (14)

Norma Técnica E.070-2006 "Albañilería", esta norma nos brinda los requisitos estructurales mínimos para los muros portantes como son el espesor efectivo (t) y el esfuerzo axial máximo que pueden soportar, comprobar la estructuración en planta mediante la identificación de los muros a reforzar y verificar la densidad mínima de muros reforzados; por último, el control de fisuración de los muros portantes y la verificación de la resistencia al corte del edificio. (15)

2.2.2 Viviendas Informales

Actualmente, Huancayo Metropolitano tiene una evolución morfológica urbana en crecimiento, con la migración de personas de procedencia rural en búsqueda de mejores oportunidades e ingresos en la ciudad metropolitana, pero, conjuntamente con ello, se viene dando mucha informalidad debido a la necesidad fundamental de una vivienda: construcciones de 2 a 5 pisos con materiales y mano de obra no calificada, planos y estructuraciones deficientes.

Las personas, con la finalidad de ahorrar un poco y tener la construcción en el menor tiempo posible, optan por la autoconstrucción de sus viviendas; lo que no tienen en cuenta es que ante la eventualidad de un sismo de alta magnitud el principal causante de las muertes no es el movimiento tectónico; por el contrario, es el colapso de dichas viviendas; a esto cabe mencionar los factores climáticos como son las lluvias y granizadas, así como el hecho de que las personas no tramitan los permisos de construcción necesarios como el caso sucedido el 14 de octubre de 2019, donde se tuvo la caída del techo del salón

de recepciones "Dos Estrellas" – Distrito de Huancán, que dejó 6 muertos y diversos heridos debido al peso del granizo (Ver Figura 7).

Figura 7: Caída del Techo en Salón de Recepciones dejó 6 muertos, Huancán. Fuente: El Comercio, 14 de Octubre del 2019.

Tenemos a las municipalidades encargadas de entregar permisos de construcción a las viviendas, pero formalmente no se han determinado entidades que validan a las viviendas de carácter informal; por contraparte, se reconoce al Instituto Nacional de Defensa Civil (INDECI) como una de las instituciones encargadas de identificar, clasificar y evaluar los peligros que puedan ocurrir en dichas construcciones; y del mismo modo SENCICO determina la cantidad de viviendas informales que existen en un determinado territorio.

2.2.2.1 Plan de Desarrollo Urbano de Huancayo del año 2006 al 2011

Según el Plan Urbano de Huancayo 2006 – 2011, en el consolidado por distritos de Huancayo Metropolitano, se puede observar que un 31,78% del total de hectáreas de suelos están destinadas al ítem de viviendas, tanto de adobe o de ladrillo y cemento (Ver Figura 8), confirmando así la demanda clara de la construcción de viviendas y dejando poco espacio para áreas verdes. (16)

Figura 8:Usos del Suelo en Huancayo Metropolitano. Fuente: Plan de Desarrollo Urbano de Huancayo del año 2006 al 2011.

2.2.2.2 Sistema Estructural Mixto

Como indica en el artículo 16 de la Norma E.030 "Diseño Sismorresistente", sobre los sistemas estructurales, se debe verificar el porcentaje de la cortante basal que actúa sobre estructuras de concreto armado (numeral 16.1), tales como son las columnas de pórticos, los muros estructurales y edificaciones con muros de ductilidad limitada, o estructuras de acero, de albañilería, de madera o de tierra; las viviendas que serán analizadas cuentan con el siguiente sistema estructural mixto definido así porque cada eje de análisis posee un sistema estructural distinto, los cuales son los siguientes:

 Eje transversal (X-X): Sistema Estructural de Pórticos, el porcentaje mínimo de la cortante basal que deben absorber las columnas es un 80%, criterio establecido cuando se tienen otros elementos del mismo material de concreto como son las placas (Ver Figura 9). (12)

Eje longitudinal (Y-Y): Sistema Estructural de Albañilería Confinada, posee elementos sismorresistentes denominados muros portantes que son construidos con unidades de albañilería de arcilla o concreto (Ver Figura 9). (12)

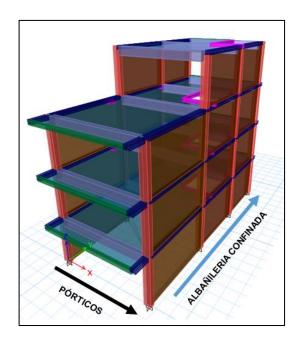


Figura 9: Sistema Estructural Mixto, Pórticos en la Dirección Transversal y Albañilería Confinada en la Dirección Longitudinal. Fuente: Elaboración propia.

Para el análisis estructural de cada eje, se trabajará con los siguientes materiales y sus características respectivamente (Ver Tabla 2,3 y 4):

Concreto:

Tabla 2: Características del material de Concreto.

Peso Específico "Vc":	2400 kgf/m ³	
Resistencia a la Compresión "f'c":	210kgf/cm ² (21MPa)	175kgf/cm² (17.5MPa)
Módulo de Elasticidad "Ec=15000 √(fc)":	217 370,65kgf/cm ² (21 737,065MPa)	198 431.35kgf/cm ² (19 843,135MPa)
Módulo de Corte "Gc=Ec/2.3":	94 508,98kgf/cm ² (9 450,898MPa)	86 274,50kgf/cm ² (86 27,450MPa)
Módulo de Poisson "µc":	0,15 ((Rígido)

Acero de Refuerzo – Grado 60:

Tabla 3: Características del material de Acero de Refuerzo - Grado 60.

Peso Específico "Vs":	7 850kgf/m ³	
Esfuerzo de fluencia "fy":	4 200kgf/cm ² (420MPa)	
Módulo de Elasticidad "Es ":	2 000 000kgf/cm ² (200 000MPa)	

Albañilería Confinada:

Tabla 4: Características del material de Albañilería Confinada.

Unidades de Arcilla:	Sólidas (Ladrillo King Kong)	Huecas (Ladrillo Pandereta)
Espesor efectivo del ladrillo "t":	13cm Aparejo de Soga	11cm Aparejo de Soga
	23cm Aparejo de Cabeza	23cm Aparejo de Cabeza
Peso Específico "γm":	1800kgf/m ³	1350kgf/m ³
Tipo de Ladrillo King Kong	Artesanal	Industrial
Resistencia a la Compresión "f'm":	35kgf/cm ² (0,35MPa)	65kgf/cm ² (0.65MPa)
Módulo de Elasticidad "Em=500xf'm":	17 500kgf/cm² (1 750MPa)	32 500kgf/cm ² (3 250 MPa)
Módulo de Corte "Gm = 0.4xEm"	7 000kgf/cm² (700MPa)	13 000kgf/cm ² (1 300MPa)
Módulo de Poisson "µm":	0,25 (Dúctil, Flexible)	

2.2.3 Procedimiento Sugerido para la Determinación de las AccionesSísmicas – Norma E.030 "Diseño Sismorresistente"

El Anexo I de la Norma E.030 considera 3 etapas previas para la validación estructural; estas etapas previas llevan por título Peligro Sísmico, donde solo nos indica identificar el lugar y las características del terreno del proyecto; la segunda etapa es sobre la caracterización del edificio basado en su categoría, sistema estructural e irregularidad; la tercera es el análisis estructural dependiente de las dos etapas anteriores donde se plantean los criterios del modelado matemático así como calcular el peso de la estructura y define los procedimientos de análisis en un rango lineal elástico, tanto el análisis estático como el dinámico; cumpliendo estas tres etapas previas, se llega a la última

etapa: la validación de la estructura, que depende de los resultados obtenidos de la etapa previa y determina si la estructura cumple o no con los requisitos de rigidez e irregularidad que la norma exige (Ver Figura 10).

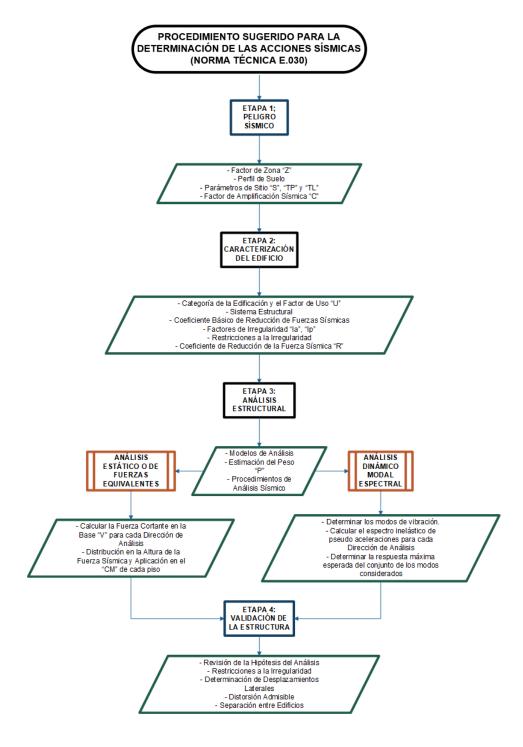


Figura 10: Diagrama del Procedimiento Sugerido para la Determinación de las Acciones Sísmicas - Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Este procedimiento es la representación matemática de la fuerza causada por un sismo futuro en función a las características propias de la estructura como son la ubicación geográfica, categoría y demás; dicha fuerza será repartida en todos los pisos y así analizar el desplazamiento de cada uno de ellos cumpliendo con las siguientes 4 etapas:

2.2.3.1 ETAPA 1: Peligro Sísmico

Según el IGP, el peligro sísmico de una región es la probabilidad de que el parámetro que mide el movimiento del suelo producido por un sismo supere un límite establecido en un determinado período de tiempo, lo que significa conocer algún valor que represente la intensidad del movimiento del suelo en distintos lugares de la región establecida, los cuales serán necesarios para un estudio de desarrollo urbano y diseño sismorresistente de las construcciones. La norma E.030 nos indica determinar el valor de "Z" que define el porcentaje de la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ser excedida en 50 años, lo que significa que durante su vida útil de 50 años se suscitarán varios sismos; por ejemplo, si de cada 10 sismos uno de ellos es un sismo severo que tiene un período de retorno de 475 años; por lo tanto, se tiene un 90% de seguridad que la estructura diseñada soporte este sismo, pero un 10% de que este sismo sea superior.

$$E(\%) = 1 - \left(1 - \frac{1}{T_R}\right)^{V_u}$$

Donde:

- E (%): Probabilidad de excedencia

- V_u: Vida útil en años

- T_R: Período de retorno en años

Los valores de "Z" fueron calculados mediante una evaluación del peligro sísmico probabilístico con el uso del software CRISIS 2007 en

donde se determinó un mapa de peligro sísmico para el Perú considerando 33 fuentes sismogénicas basadas en la distribución espacial de la sismicidad (Ver Figura 11). Huancayo se encuentra en la fuente número 24. El software estima el tamaño de los futuros sismos; en este estudio dio como resultado mapas de peligro sísmico que plasman las aceleraciones esperadas para diferentes períodos de retorno y períodos estructurales.

Para un período de retorno de 475 años, con un punto de ubicación de coordenadas geográficas en Lima con latitud -12,05 y longitud de -77,05, se obtuvo una aceleración máxima en el suelo de la zona de estudio de 444,23 gals (cm/s2), lo que es aproximadamente un 0,45g similar al valor que la tabla 1 muestra en la norma E.030.

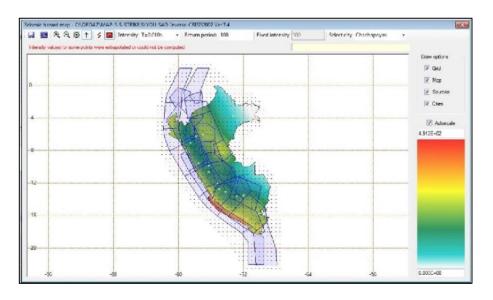


Figura 11: Mapa de Peligro Sísmico para el Perú, CRISIS-2007 Fuente: Re-Evaluación del Peligro Sísmico Probabilístico para el Perú, IGP-Lima 2014.

Esta etapa pide identificar los valores de los siguientes factores: "Z" (Ver Tabla 5), "S" (Ver Tabla 8) en función a la zona, condición geotécnica con los valores de "TP" y "TL" (Ver Tabla 9) y el factor de amplificación sísmica "C".

Tabla 5: Factores de Zona "Z".

Tabla N° 1 FACTORES DE ZONA "Z"		
ZONA	Z	
4	0,45	
3	0,35	
2	0,25	
1	0,10	

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" - 2019.

El valor de "S" resulta del Estudio de Mecánica de Suelos que clasifica los perfiles de suelos teniendo en cuenta 3 ensayos que la Norma E.030 permite: velocidad promedio de propagación de las ondas de corte (VS), otra alternativa para suelos granulares se realiza el ensayo de penetración estándar (SPT) en base a los parámetros definidos en la NTP 339.133, mediante el promedio ponderado de los resultados de N60 o para suelos cohesivos el promedio ponderado de la resistencia al corte en condición no drenada (Su). Todas las propiedades calculadas para cada perfil de suelo se aplican hasta una profundidad de 30m medida desde el nivel de fondo de la cimentación. La Norma E.030 nos presenta la Tabla N°2 con el resumen de valores típicos para cada tipo de perfil de suelo (Ver Tabla 6):

Tabla 6: Clasificación de los Perfiles de Suelo.

	Tabla N°2 CLASIFICACIÓN DE LOS PERFILES DE SUELO						
Perfil	٧s	N ₆₀	Su				
S ₀	> 1500m/s	-	-				
S ₁	500m/s a 1500m/s	> 50	> 100kPa (1kgf/cm ²)				
S ₂	180m/s a 500m/s	15 a 50	50kPa a 100kPa (0,5kgf/cm² a 1kgf/cm²)				
S ₃	< 180m/s	180m/s 25kPa a 50kPa (0,25kgf/cm² a 0.5kg/cm² a 0.5kg/cm					
S ₄	Clasificación basada en el EMS						

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Adicionalmente, la Norma E.050 "Suelos y Cimentaciones" establece las limitaciones de uso permitido para el ensayo de SPT en la siguiente tabla (Ver Tabla 7):

Tabla 7: Aplicación y Limitaciones del Ensayo SPT.

APLICACIÓN Y LIMITACIONES DEL ENSAYO SPT						
			Permitida		No Perm	itida
Ensayos In Situ	Norma Aplicable	Técnica de Exploración	Tipo de Suelo (1)	Parámetro a obtener (2)	Técnica de Exploración	Tipo de Suelo (1)
SPT	NTP 339.133	Perforación	Todos excepto gravas	N	Calicata	Gravas
simbología, (2) Leyenda	(1) Según la clasificación SUCS, cuando los ensayos son aplicables a suelos de doble simbología, ambos están incluidos. (2) Leyenda: N = Número de golpes por cada 0,30 m de penetración en el ensayo estándar de penetración.					

Fuente: Norma Técnica E.050 "Suelos y Cimentaciones" – 2018.

Determinado el tipo de perfil de suelo y la zona en la cual se ubica la edificación, se obtiene el factor de suelo "S" con el uso de la siguiente Tabla N°3 de la Norma E.030 (Ver Tabla 8):

Tabla 8: Factor de Suelo "S".

Tabla N° 3 FACTOR DE SUELO "S"					
SUELO	S ₀	S ₁	S ₂	S ₃	
Z ₄	0,80	1,00	1,05	1,10	
Z ₃	0,80	1,00	1,15	1,20	
Z_2	0,80	1,00	1,20	1,40	
Z ₁	0,80	1,00	1,60	2,00	

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

El tipo de perfil de suelo también define el período Tp, encargado de delimitar la plataforma del factor "C" y el período TL, responsable de indicar el inicio de la zona del factor "C" con desplazamiento constante (Ver Tabla 9). Estos valores son necesarios para crear la función

Factor de Amplificación Sísmica (C) versus Período (T) de la Norma E.030.

Tabla 9: Períodos T_p y T_L.

Tabla N° 4 PERÍODOS "T _P " Y "T _L "				
Doríodos	Perfil de suelo			
Períodos	S ₀	S ₁	S ₂	S ₃
T _P (s)	0.3	0.4	0.6	1.0
T _L (s)	3.0	2.5	2.0	1.6

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Respecto al factor "C", éste se interpreta como el factor de amplificación de la aceleración estructural respecto de la aceleración del suelo. Se partió de los siguientes registros sísmicos (Ver Tabla 10):

Tabla 10: Registros Sísmicos para la Obtención del Espectro de Pseudo Aceleraciones.

REGISTROS SÍSMICOS PARA LA OBTENCIÓN DEL ESPECTRO DE PSEUDO ACELERACIONES					
UBICACIÓN	FECHA	Profundidad (Km)	MAGNITUD (Mw)		
Lima	17/10/1966	38	7.5		
Ancash	31/05/1970	43	7.7		
Lima	03/10/1974	13	7.5		

Fuente: Catálogo General de Isosistas para Sismos Peruanos – IGP, Lima 2016.

Obteniendo el espectro de respuesta para cada uno de los registros sísmicos, se elaboró el siguiente espectro de diseño con una curva suavizada denominada espectro de pseudo aceleraciones en la Norma E.030 (Ver Figura 12).

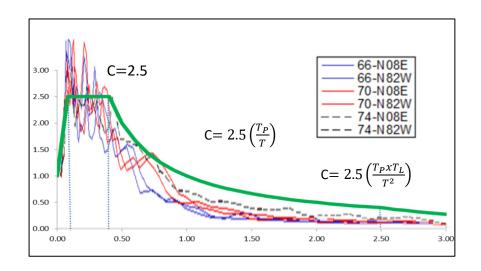


Figura 12: Espectro de Pseudo Aceleraciones de la Norma Técnica E.030. Fuente: Seminario - Actualización de la Norma Técnica Peruana E.030, marzo de 2016.

Para el factor "C(inicial)" (Amplificación Sísmica), éste es calculado haciendo uso del período fundamental de vibración de la estructura (T), el cual es calculado aproximadamente mediante la relación entre la altura total de la vivienda (hn) y un coeficiente (CT) dependiente del tipo de elementos resistentes se tienen en la dirección considerada (Ver Tabla 11):

$$T = \frac{h_n}{C_T}$$

Tabla 11: Coeficientes para la Estimación del Período Fundamental de Vibración de una Estructura.

COEFICIENTES PARA LA ESTIMACIÓN DEL PERÍODO FUNDAMENTAL DE VIBRACIÓN DE UNA ESTRUCTURA						
CT = 35	CT = 45	CT = 60				
Pórticos de concreto armado sin muros de corte.	Pórticos de concreto armado con muros en las cajas de ascensores y escaleras.	Albañilería.				
Pórticos dúctiles de acero con uniones resistentes a momentos, sin arriostramiento.	Pórticos de acero arriostrados.	Edificios de concreto armado duales, de muros estructurales y de muros de ductilidad limitada.				

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

2.2.3.2 ETAPA 2: Caracterización del Edificio

Esta etapa consta en identificar la categoría de la edificación y con el uso de la Tabla N°5 de la Norma E.030 determinar el valor de "U", factor de uso (Ver Tabla 12).

Tabla 12: Categoría de las Edificaciones y Factor "U".

C	Tabla № 5 CATEGORÍA DE LAS EDIFICACIONES Y FACTOR "U"					
CATEGORIA	DESCRIPCIÓN	FACTOR U				
А	A1: Establecimientos del sector salud (públicos y privados) del segundo y tercer nivel, según lo normado por el Ministerio de Salud	Ver nota 1				
Edificaciones Esenciales	A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas edificaciones que puedan servir como refugio después de un desastre. Se incluyen las siguientes edificaciones:					
	- Establecimientos de salud no comprendidos en la categoría A1.					
	 Puertos, aeropuertos, estaciones ferroviarias de pasajeros, sistemas masivos de transporte, locales municipales, centrales de comunicaciones. 					
	- Estaciones de bomberos, cuarteles de las fuerzas armadas y policía.	1.5				
	Instalaciones de generación y transformación de electricidad, reservorios y plantas de tratamiento de agua. Instituciones educativas, institutos superiores tecnológicos y universidades.					
	universidades. - Edificaciones cuyo colapso puede representar un riesgo adicional, tales como grandes hornos, fábricas y depósitos de materiales inflamables o tóxicos.					
	- Edificios que almacenen archivos e información esencial del Estado.					
В	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas.	1.3				
Edificaciones Importantes	También se considerarán depósitos de granos y otros almacenes importantes para el abastecimiento.					
С	Edificaciones comunes tales como: viviendas, oficinas, hoteles,					
Edificaciones Comunes	restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios o fugas de contaminantes.	1				
D Edificaciones Temporales	Construcciones provisionales para depósitos, casetas y otras similares.	Ver nota 2				

Nota 1: Las nuevas edificaciones de categoría A1 tienen aislamiento sísmico en la base cuando se encuentren en las zonas sísmicas 4 y 3. En las zonas sísmicas 1 y 2, la entidad responsable puede decidir si usa o no aislamiento sísmico. Si no se utiliza aislamiento sísmico en las zonas sísmicas 1 y 2, el valor de U es como mínimo 1,5.

Nota 2: En estas edificaciones se provee resistencia y rigidez adecuadas para acciones laterales, a criterio del proyectista.

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Para la obtención de los valores de "U", se hace uso, una vez más, del estudio de peligro sísmico. Basado en los estudios realizados en los análisis para un sismo severo (raro) en la ciudad de Lima con un período de retorno de 475 años, se obtuvo una aceleración máxima de 444.23cm/s2, pero ahora haciendo uso de un sismo muy raro que tiene por período de retorno de 975 años su aceleración máxima es de 541.15cm/s2 (Ver Tabla 13). La relación de aceleraciones del sismo muy raro sobre el severo resulta 1.22 y la Norma coloca un valor de factor de uso "U" de 1.30, lo que significa que se analiza una estructura para un sismo muy raro y no para uno severo.

Tabla 13: Valores de Máximas aceleraciones estimadas para las capitales de departamento de Perú (referencia, Plaza de Armas).

Ciudad	Coordenadas Geograficas		Aceleraciones Maximas PGA (gals) por periodo d retorno en años Tr			r periodo de
	Latitud	Longitud	Tr = 50	Tr = 100	Tr = 475	Tr = 975
Tumbes	-3.56	-80.45	181.72	228.43	409.05	494.84
Piura	-5.2	-80.63	181.32	228.89	412.19	499.87
Chiclayo	-6.77	-79.84	166.02	201.69	366.46	437.97
Trujillo	-8.11	-79.03	181.79	230.20	413.56	498.62
Huaraz	-9.53	-77.53	102.48	158.22	253.80	312.68
Lima	-12.05	-77.05	188.66	246.28	444.23	541.15
Ica	-14.07	-75.73	206.92	279.28	473.32	569.62

Fuente: Re-Evaluación del Peligro Sísmico Probabilístico para el Perú, IGP-Lima 2014.

Además de verificar si el Sistema Estructural a utilizar es el permitido mediante la Tabla N°6 de la Norma E.030 (Ver Tabla 14) y del mismo modo cuál es el "Ro" (coeficiente básico de reducción de fuerzas sísmicas) a utilizar en la Tabla N°7 de la misma Norma (Ver Tabla 15).

Tabla 14: Categoría y Sistema Estructural de las Edificaciones.

Tabla №6 CATEGORÍA Y SISTEMA ESTRUCTURAL DE LAS EDIFICACIONES				
Categoría de la Edificación	Zona	Sistema Estructural		
	4 y 3	Aislamiento Sísmico con cualquier sistema estructural.		
A1	2 y 1	Estructuras de acero tipo SCBF y EBF. Estructuras de concreto: Sistema Dual, Muros de Concreto Armado. Albañilería Armada o Confinada.		
A2 (**)	4, 3 y 2	Estructuras de acero tipo SCBF y EBF. Estructuras de concreto: Sistema Dual, Muros de Concreto Armado. Albañilería Armada o Confinada.		
	1	Cualquier sistema		

Categoría de la Edificación	Zona	Sistema Estructural	
В	4, 3 y 2	Estructuras de acero tipo SMF, IMF, SCBF, OCBF y EBF. Estructuras de concreto: Sistema Dual, Muros de Concreto Armado. Albañilería Armada o Confinada. Estructuras de madera.	
	1	Cualquier sistema.	
С	4, 3, 2 y 1	Cualquier sistema.	

^(*) Para edificaciones con cobertura liviana se podrá usar cualquier sistema estructural. (**) Para pequeñas construcciones rurales, como escuelas y postas médicas, se puede usar materiales

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" - 2019.

Tabla 15: Sistemas Estructurales.

Tabla N° 7 SISTEMAS ESTRUCTURALES					
Sistema Estructural	Coeficientes Básico de Reducción Ro (*)				
Acero:					
Pórticos Especiales Resistentes a Momentos (SMF)	8				
Pórticos Intermedios Resistentes a Momentos (IMF)	5				
Pórticos Ordinarios Resistentes a Momentos (OMF)	4				
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	7				
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	4				
Pórticos Excéntricamente Arriostrados (EBF)	8				
Concreto Armado:					
Pórticos	8				
Dual	7				
De muros estructurales	6				
Muros de ductilidad limitada	4				
Albañilería Armada o Confinada.	3				
Madera	7 (**)				

^(*) Estos coeficientes se aplicarán únicamente a estructuras en las que los elementos verticales y horizontales permitan la disipación de la energía manteniendo la estabilidad de la estructura. No se aplican a estructura

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

El coeficiente "R_(inicial)", que está encargado de reducir la fuerza sísmica original, será calculado dependiendo de las irregularidades de altura y planta que la vivienda pueda tener halladas a simple vista (Ver Tabla 16 y 17), las cuales son detalladas en las Tabla N°8 y N°9 de la Norma E.030 respectivamente.

^(**) Para pequeñas construcciones rurales, como escuelas y postas médicas, se puede usar materiales tradicionales siguiendo las recomendaciones de las normas correspondientes a dichos materiales.

^(**) Para diseño por esfuerzos admisibles.

Tabla 16: Irregularidades Estructurales en Altura.

Tabla № 8 IRREGULARIDADES ESTRUCTURALES EN ALTURA	Factor de Irregularidad Ia
Irregularidad de Rigidez — Piso Blando Existe irregularidad de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales podrán calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.	0.75
Irregularidades de Resistencia – Piso Débil Existe irregularidad de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 80% de la resistencia del entrepiso inmediato superior.	
Irregularidad Extrema de Rigidez (Ver Tabla Nº 10) Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales podrán calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga. Irregularidad Extrema de Resistencia (Ver Tabla Nº 10) Existe irregularidad extrema de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas	0.50
cortantes es inferior a 65% de la resistencia del entrepiso inmediato superior. Irregularidad de Masa o Peso Se tiene irregularidad de masa (o peso) cuando el peso de un piso, determinado según el artículo 26, es mayor que 1,5 veces el peso de un piso adyacente. Este criterio no se aplica en azoteas ni en sótanos. Irregularidad Geométrica Vertical La configuración es irregular cuando, en cualquiera de las direcciones de análisis, la dimensión en planta de la estructura resistente a cargas laterales es mayor que 1,3 veces la correspondiente dimensión en un piso adyacente. Este criterio no se aplica en azoteas ni en sótanos.	0.90
Discontinuidad en los Sistemas Resistentes Se califica a la estructura como irregular cuando en cualquier elemento que resista más de 10% de la fuerza cortante se tiene un desalineamiento vertical, tanto por un cambio de orientación, como por un desplazamiento del eje de magnitud mayor que 25% de la correspondiente dimensión del elemento.	0.80
Discontinuidad extrema de los Sistemas Resistentes (Ver Tabla Nº 10) Existe discontinuidad extrema cuando la fuerza cortante que resisten los elementos discontinuos según se describen en el ítem anterior, supere el 25% de la fuerza cortante total.	0.60

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Tabla 17: Irregularidades Estructurales en Planta.

Tabla № 9 IRREGULARIDADES ESTRUCTURALES EN PLANTA	Factor de Irregularidad Ip
Irregularidad Torsional Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (Δmáx) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga (Δprom). Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla Nº 11.	0.75
Irregularidad Torsional Extrema (Ver Tabla Nº 10) Existe irregularidad torsional extrema cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (Δmáx) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,5 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga (Δprom). Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla Nº 11.	0.60
Esquinas Entrantes La estructura se califica como irregular cuando tiene esquinas entrantes cuyas dimensiones en ambas direcciones son mayores que 20% de la correspondiente dimensión total en planta.	0.90
Discontinuidad del Diafragma La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50 % del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.	0.85
Sistemas no Paralelos Se considera que existe irregularidad cuando en cualquiera de las direcciones de análisis los elementos resistentes a fuerzas laterales no son paralelos. No se aplica si los ejes de los pórticos o muros forman ángulos menores que 30° ni cuando los elementos no paralelos resisten menos que 10% de la fuerza cortante del piso.	0.90

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Además de verificar mediante la Tabla N°10 de la Norma E.030 las restricciones a la irregularidad dependiente del sistema estructural utilizado (Ver Tabla 18), dicho valor inicial será corregido con los resultados obtenidos del primer análisis.

Tabla 18: Categoría y Regularidad de las Edificaciones.

Tabla N° 10 CATEGORÍA Y REGULARIDAD DE LAS EDIFICACIONES			
Categoría de la Edificación	Zona	Restricciones	
A1 y A2	4, 3 y 2	No se permiten irregularidades.	
	1	No se permiten irregularidades extremas.	
В	4, 3 y 2	No se permiten irregularidades extremas.	
	1	Sin restricciones.	
	4 y 3	No se permiten irregularidades extremas.	
С	2	No se permiten irregularidades extremas excepto en edificios de hasta 2 pisos u 8m de altura total.	
1		Sin restricciones.	

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

2.2.3.3 ETAPA 3: Análisis Estructural

Para el modelo de análisis, se hará mediante el uso del software ETABS v.16.2.1, en donde las estructuras tanto de concreto armado y albañilería serán analizadas considerando solo las inercias de las secciones brutas, además de que se contará con diafragmas rígidos en cada piso y con ello hacer uso de un modelo con masas concentradas y tres grados de libertad (2 traslacionales en dirección longitudinal y transversal como también 1 rotacional en la dirección Z) para cada diafragma (Ver Figura 13); con ello, la distribución de las fuerzas horizontales se darán en función a la rigidez que cada elemento resistente posee. (17)

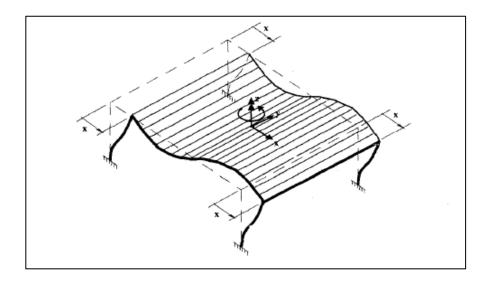


Figura 13: Deformaciones en los elementos estructurales de un entrepiso con diafragma rígido en su mismo plano ante un desplazamiento el eje X. Fuente: Dinámica Estructural Aplicada al Diseño Sísmico, García Reyes, Luis Enrique – 1998.

Para la estimación del peso sísmico "P", se basa en que el sismo crea aceleraciones en la base que se transmiten a la estructura y al ser multiplicada por la masa crea la fuerza de inercia en cada entrepiso; si consideramos diafragma rígido, la masa que se desplaza se considera para cada nivel, la masa de los elementos a la mitad de la altura de entrepiso más la mitad del piso superior, creando un modelo pseudo tridimensional moviéndose en los 3GDL ya descritos anteriormente; por ello el peso de los elementos ubicados a la media altura del primer nivel no se considera en el cálculo del peso sísmico total porque este se asume que será distribuido hacía el suelo (Ver Figura 14).

Y este peso de cada nivel será ubicado en el Centro de Masas de cada diafragma de la estructura, lugar donde serán aplicadas las fuerzas sísmicas (inerciales) determinadas en este análisis estático.

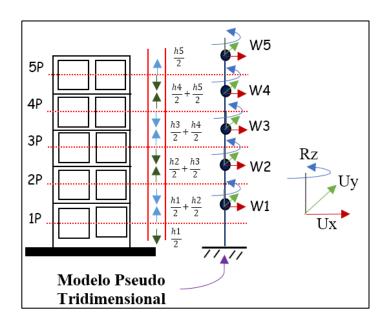


Figura 14: Modelo Pseudo Tridimensional con 3 GDL en cada entrepiso.

Estos pesos en cada nivel dependen del tipo de categoría, ya que éste define el porcentaje de CM, CV y CVT que debe ser considerado para calcular el peso sísmico "P" (Ver Tabla 19):

Tabla 19: Estimación de Peso Sísmico (P).

ESTIMACIÓN DEL PESO SÍSMICO (P)			
CATEGORÍA	CM	CV	CVT
АуВ		50%	
С	100% (carga	25%	
Depósitos	permanente y total de la edificación)	80% (del peso total que es posible almacenar)	25% (en azoteas y techos en general)
Tanques, silos y similares	de la edificación)	100% (de la carga que puede contener)	

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Análisis Estático o de Fuerzas Estáticas Equivalentes

Con los valores de los factores sísmicos iniciales en el caso de " $C_{(inicial)}$ " y " $R_{(inicial)}$ ", se procederá a calcular el coeficiente de cortante basal inicial con la siguiente fórmula: $C_{(ETABS)}=Z^*U^*C^*S$ / R, en cada una de las direcciones de la vivienda; este coeficiente multiplica automáticamente al peso calculado por el software y con ello se

obtiene la V_{BASAL(inicial)}. Esto nos servirá para poder obtener el verdadero período fundamental de vibración de la estructura (T), que es calculado por el software mediante la siguiente fórmula (Método de Rayleigh), afectado por un valor de 0.85, ya que no se considerará la rigidez de los elementos no estructurales:

$$T = 0.85 \left(2\pi \sqrt{\frac{\sum_{i=1}^{n} P_i \cdot d_i^2}{\mathsf{g} \cdot \sum_{i=1}^{n} f_i \cdot d_i}} \right)$$

Donde:

- Pi: Peso sísmico del nivel "i".
- fi: Fuerza lateral en el nivel "i".
- di: Desplazamiento horizontal del centro de masas del nivel "i" debido a la fuerza "fi".

Seguidamente de este cálculo, se verifica si el factor inicial de Ro es el correcto mediante el porcentaje de V_{BASAL (inicial)} que absorben las columnas en la dirección transversal y del mismo modo en la dirección longitudinal los muros de albañilería.

Además de evaluar las irregularidades faltantes como son de rigidez y torsional, con los resultados finales se tomará el valor mínimo en cada irregularidad y, del mismo modo, si en ambas direcciones se tuviera por ejemplo un valor distinto en la irregularidad en planta se usará el menor valor para ambas direcciones.

Con los resultados obtenidos se definen "C_(final)" y "R_(final)", cuya relación no se considera menor que 0.11 se procede al segundo análisis del modelo matemático distribuyendo la V_{BASAL(final)} en proporción a la altura de la vivienda como también en cada dirección (Ver Figura 15); dichas fuerzas serán aplicadas en el Centro de Masas de cada piso considerando un momento torsor accidental que resulta al adicionar una excentricidad accidental de 0.05 veces la longitud del edificio en la dirección perpendicular a la dirección del análisis, todo ello mediante las siguientes fórmulas:

$$F_i = \alpha_i \cdot V$$

$$\alpha_i = \frac{P_i(h_i)^k}{\sum_{j=1}^n P_j(h_j)^k}$$

Donde:

- Fi: Fuerza sísmica horizontal en el nivel "i", ubicada en el centro de masas.
- Pi: Peso del nivel "i".
- hi: Altura del nivel "i" con relación al nivel del terreno.
- n: Número de pisos del edificio.
- k: exponente relacionado con "T" (período fundamental de vibración de la estructura), determina la distribución lineal o exponencial de las "Fi:", calculada de acuerdo a:

 $T \le 0.5$ segundos: k = 1.0

T > 0.5 segundos: $k = (0.75 + 0.5*T) \le 2.0$

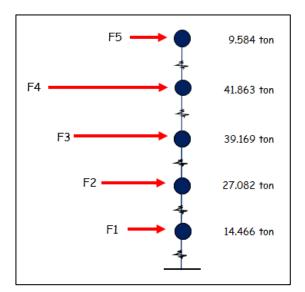


Figura 15: Distribución de la Fuerza Sísmica en Altura, ubicada en el CM de cada entrepiso.

Se puede incorporar fuerzas sísmicas verticales a la estructura cuando se tienen elementos horizontales con grandes luces, incluyendo los volados.

Análisis Dinámico Modal Espectral

En el artículo 29 de la Norma E.030 "Diseño Sismorresistente", se indica que cualquier estructura puede ser diseñada usando este tipo de análisis, la cual no restringe su uso debido a la informalidad de la vivienda. Este análisis estructural se basa en combinar los modos producidos en la estructura obtenidos mediante un espectro inelástico de pseudo - aceleraciones. Las siguientes 2 etapas son las que se seguirán:

Primero se debe crear un espectro inelástico de pseudo aceleraciones en la dirección longitudinal y transversal respectivamente con el uso de la siguiente fórmula:

$$Sa = \frac{Z \cdot U \cdot C \cdot S}{R_{(final)}} \cdot g$$

Donde "Z", "U", "S" y "R" son los parámetros sísmicos constantes determinados anteriormente, y "g" es la aceleración de la gravedad con un valor de 9.80665 m/s2; en el caso del valor "C", este será variable teniendo valores para un período desde 0.1seg hasta 15seg, ya que dependerá de las siguientes fórmulas y al ser variable dicho valor la aceleración dibujará la siguiente gráfica (Ver Figura 18):

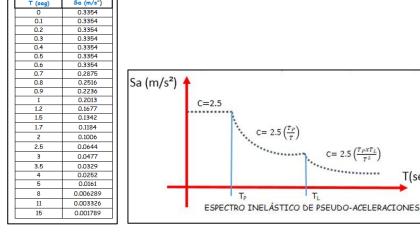


Figura 16: Espectro Inelástico de Pseudo Aceleraciones.

T(seg)

En segundo lugar se considera una cantidad mínima de 3 modos de vibración a calcular por cada piso (Ver Figura 19), estos modos de vibración normal o natural son el movimiento armónico de todas las masas de una estructura que se mueven en fase para una misma frecuencia angular, de los cuales luego del análisis se debe tener una masa participativa no menor al 90% del total de masa de la estructura, además se debe considerar una excentricidad accidental del mismo modo que en el análisis estático.

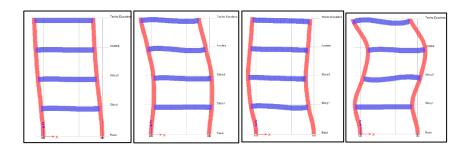


Figura 17: Primer, Segundo, Tercer y Cuarto Modo de Vibración de un Pórtico.

Cada piso de la edificación tendrá sus resultados de fuerzas y desplazamientos hallados mediante el uso de la combinación cuadrática completa aplicada a los datos obtenidos en el análisis de cada modo de vibración:

$$r = \sqrt{\sum \sum r_i \cdot \rho_{ij} \cdot r_j}$$

$$\rho_{ij} = \frac{8 \cdot \beta^2 \cdot (1 + \lambda) \cdot \lambda^{3/2}}{(1 - \lambda^2)^2 + 4 \cdot \beta^2 \cdot \lambda \cdot (1 + \lambda)^2} \quad \lambda = \frac{\omega_j}{\omega_i}$$

Donde:

- r: Respuestas modales, desplazamientos o fuerzas.
- pij: Coeficiente de correlación.
- β: Fracción de amortiguamiento crítico, constante en todos los modos un 0.05.
- ωi, ωj: Frecuencias angulares de los modos i, j.

Se debe cumplir para realizar el diseño de los elementos estructurales que la fuerza cortante calculada para el primer entrepiso debe ser como mínimo el 80% de la cortante hallada mediante el análisis estático si es el caso que la vivienda es regular; de lo contrario, será un 90%; de no verificarse este criterio se deberá escalar los resultados y no los desplazamientos. (12)

2.2.3.4 ETAPA 4: Validación de la Estructura

En esta etapa, se tiene 5 puntos importantes: el primero es la Revisión de las Hipótesis del Análisis donde validamos que la estructura de Albañilería Confinada no sea de más de 15m de altura, aun cuando sea irregular y el valor de "R_(final)" mediante las irregularidades en altura y planta como del porcentaje de absorción de la V_{BASAL(final)}; el segundo paso es verificar las restricciones de la irregularidad con uso de la Tabla N°10 por segunda vez, de no cumplirse esto la estructura no cumpliría con el requisito de regularidad requerida.

Inicialmente se tiene una fuerza elástica en el rango lineal calculada por los parámetros sísmicos F= Z*U*C*S, esta fuerza es reducida por un factor R que depende de la ductilidad, la sobrerresistencia y la redundancia de la estructura según el ATC (Applied Technology Council) (18); con esta fuerza reducida, se realiza el análisis estructural matricialmente mediante el software ETABS y al obtener los desplazamientos laterales para cada piso, éstos deben ser multiplicados por 0.75 R si la estructura es regular, de lo contrario por 0.85 R con ello obtenemos los desplazamientos reales que son lineales inelásticos, el cual está relacionado a la fuerza máxima elástica aplicada a la estructura (Ver Figura 16), pero realmente la estructura no se comporta así; al contrario, se comporta inicialmente de una forma elástica y luego no lineal formando una curva de capacidad que posee una mayor resistencia y mayor ductilidad, la cual puede ser vista bajo un análisis no lineal.

Cabe resaltar que los desplazamientos de un análisis dinámico son menores a los del estático debido a la combinación cuadrática completa que se da a cada modo de vibración.

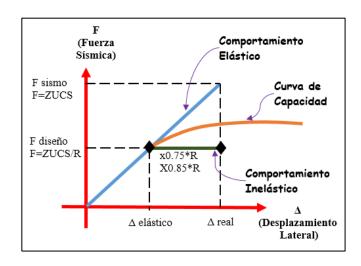


Figura 18: Diagrama de Fuerza Sísmica vs Desplazamiento Lateral.

Seguido a esto, verificamos que la distorsión máxima de cada entrepiso sea menor a los límites establecidos (Ver Tabla 11), esta distorsión, conocida como deriva, es la división entre el desplazamiento real relativo que se obtiene restando dos desplazamientos consecutivos en forma descendente ($\Delta_i - \Delta_{i-1}$) sobre la altura de entrepiso (h_{ei}).

Tabla 20: Límites para la Distorsión del Entrepiso.

Tabla N° 11 LÍMITES PARA LA DISTORSIÓN DEL ENTREPISO			
Material Predominante	(Δi / hei)		
Concreto Armado	0.007		
Acero	0.010		
Albañilería	0.005		
Madera	0.010		
Edificios de concreto armado con muros de ductilidad limitada	0.005		

Nota: Los límites de la distorsión (deriva) para estructuras de uso industrial son establecidos por el proyectista, pero en ningún caso exceden el doble de los valores de esta Tabla.

Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

Por último, se calcula la separación mínima que debe tener la estructura con otra con las siguientes fórmulas (Ver Figura 17):

- $s = 0.006h \ge 0.03m$
- $s \ge 2/3*(\Delta 1 \text{máx} + \Delta 2 \text{máx})$

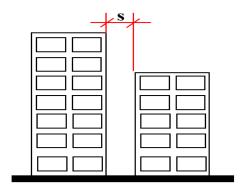


Figura 19: Separación entre Edificios. Fuente: Norma Técnica E.030 "Diseño Sismorresistente" – 2019.

2.2.4 Análisis de Muros Portantes

2.2.4.1 Requisitos Estructurales Mínimos – Muro Portante

La Norma E.070 "Albañilería", en el capítulo 7, nos indica los requisitos estructurales mínimos y el numeral 19.1 referente a un Muro Portante nos indica como calcular el espesor efectivo mínimo de éste por dos motivos específicos: el primero es que este espesor permita la correcta verticalidad durante el proceso de construcción evitando desplomes y el segundo motivo es disminuir la congestión de refuerzos si estos muros son muy delgados; el espesor efectivo se calcula como la relación entre la altura libre entre los elementos de arriostre horizontales (vigas de amarre) sobre un factor de 20 o 25 para zonas sísmicas 2 y 3 como para la zona 1 respectivamente. Seguidamente, nos menciona verificar que el esfuerzo axial máximo (σm) producido por las cargas de gravedad máximas de servicio, incluyendo la carga viva total sin reducción, debe ser menor a las siguientes fórmulas (15):

$$\sigma_m = \frac{P_m}{L \cdot t} \le 0.2 \, f'm \left[1 - \left(\frac{h}{35t} \right)^2 \right] \qquad \sigma_m \le 0.15 \, f'm$$

Donde:

- σm: Esfuerzo axial máximo.
- Pm: Carga de gravedad máxima de servicio en un muro con el 100% de la sobrecarga.
- L: Longitud total del muro, incluyendo el peralte de las columnas.
- t: Espesor efectivo del muro.
- f'm: Resistencia a la compresión axial de la albañilería.
- h: Altura libre de entrepiso.

La primera fórmula es referida a prevenir fallas por pandeo en muros portantes esbeltos, debido a la excesiva carga axial que estos pueden soportar y la segunda para asegurar que el muro portante no reduzca su ductilidad cuando se dé un sismo severo; de no cumplir con ellos, la norma nos sugiere mejorar la calidad de la albañilería; es decir, cambiar de un ladrillo artesanal por uno industrial, por ejemplo, y así incrementará su resistencia a la compresión axial (f´m) de 35kgf/cm² a 65kgf/cm². Otra solución a esto es aumentar el espesor del muro, transformarlo a una placa de concreto armado mediante la relación de módulos de elasticidad o reducir la magnitud de la carga axial que soportan los muros portantes con el uso de losas macizas o aligeradas bidireccionales, lo cual ayuda a distribuir las cargas muertas y vivas a todas las vigas que la rodean mediante el método del sobre. (19)

2.2.4.2 Estructuración en Planta

En el numeral 19.2, nos indica un criterio a considerar para tener una buena estructuración en planta. Inicia indicando que en las zonas sísmicas 2 y 3 se debe reforzar aquel muro que lleve el 10% o más de la fuerza sísmica (Vbasal), así como los muros perimetrales de cierre (cercos perimétricos) y, como segundo punto a considerar, nos indica la fórmula para evaluar la densidad mínima de muros portantes a reforzar para cada dirección de la estructura. (15)

$$\frac{\text{\'A}rea~de~Corte~de~los~Muros~Reforzados}{\text{\'A}rea~de~la~Planta~T\'ipica} = \frac{\sum L~.t}{Ap} \geq \frac{Z~.U~.S~.N}{56}$$

Donde:

- Z, U, S: Factores de zona sísmica, importancia y de suelo de la Norma E.030 "Diseño Sismorresistente".
- L, t: Longitud total incluyendo el peralte de las columnas y espesor efectivo del muro.
- N: Número de pisos de la estructura.

De no cumplir con este parámetro, la norma nos aconseja variar el espesor de algunos de los muros portantes o agregar placas de concreto armado. (19)

2.2.4.3 Control de Fisuración en Muros Portantes de Albañilería

Además, se debe analizar, en un muro portante el numeral 26.2 Control de Fisuración para evitar que estos muros en cada entrepiso se fisuren ante los sismos moderados que ocurren con mayor frecuencia mediante la siguiente fórmula (15):

$$V_e \leq 0.55 x V_m = Fuerza~Cortante~Admisible$$

$$V_m = 0.5~v'_m . \propto .t . L . + 0.23~P_g$$

$$\frac{1}{3} \leq \propto = \frac{V_e . L}{M_e} \leq 1$$

Donde:

- Ve: Fuerza Cortante producido por un sismo moderado.
- Me: Momento Flector producido por un sismo moderado.
- Vm: Resistencia al corte en el entrepiso "i" de un muro portante.
- v´m: Resistencia característica a corte de la albañilería.
- α: Factor de reducción de resistencia al corte por efectos de esbeltez
- L, t: Longitud total incluyendo el peralte de las columnas y espesor efectivo del muro.

 Pg: Carga gravitacional de servicio en un muro, con 25% de la carga viva de entrepiso y de igual forma 25% de la carga viva de techo. (Norma E.030)

2.2.4.4 Resistencia al Corte del Edificio con Muros Portantes de Albañilería

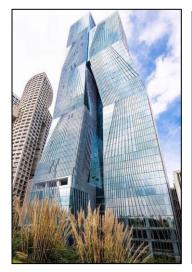
Como último punto, se encuentra la verificación de la resistencia al corte del edificio descrito en el numeral 26.4, donde los muros portantes de carga sísmica deben tener una mayor resistencia al corte que la fuerza cortante producida por el sismo severo en cada entrepiso y dirección de la estructura.

$$\sum V_{mi} \geq V_{Ei}$$

Donde:

- Vmi: Resistencia al corte en el entrepiso "i" de un muro portante.
- VEi: Fuerza cortante producido por un sismo severo.

Si con solo algunos de los muros considerados se satisface esta expresión, los demás pueden no ser reforzados ante la acción sísmica coplanar y si de darse el caso que la resistencia al corte en cada entrepiso sea mayor o igual a 3 veces la fuerza cortante por sismo severo, se considerará que la estructura se comporta elásticamente culminando aquí el diseño de los muros portantes ante cargas sísmicas coplanares solo del empleo de un refuerzo mínimo. (15)


Toda esta verificación es con el fin de proveer la resistencia que necesita la estructura para soportar el sismo severo, limita la disminución de rigidez y resistencia en los muros para así limitar el nivel de daños y sea posible la reparación económica de estos por medio de procesos no tan dificultosos. (19)

2.2.5 Análisis Estructural mediante Software

2.2.5.1 Modelamiento Estructural - ETABS v.16.2.1

El Análisis Estructural posee tres fases distintas que son el modelado, el cálculo y la interpretación; cabe resaltar que no se realiza un análisis estructural en la estructura, pero sí en modelos de estructuras reales y algunos puntos a considerar son los siguientes:

- Un modelo estructural debe poseer los aspectos importantes y necesarios de la estructura real, lo que significa que un modelo no tiene que ser exacto y nunca lo será, pero sí de análisis útil.
- Casi siempre se modelarán nodos rígidos conectados por elementos deformables como son las vigas, columnas y muros estructurales.
- Se debe elegir los elementos estructurales a modelar para poder asignarles propiedades como rigidez y resistencia.
- El modelado estructural puede parecerse mucho a la estructura real, pero no significa que tengan el mismo comportamiento a un 100%, es solo una aproximación de la realidad de la estructura (Ver Figura 20). (20)

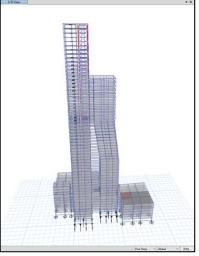


Figura 20: Torre Paradox de 60 Pisos Ubicada en la Ciudad de México, Estructura Real (Izquierda) y Modelado en ETABS elaborado por la Empresa Capacítate Estructuras (Derecha).

El software ETABS v.16.2.1 permite modelar edificaciones con gran facilidad, mediante el uso de herramientas y unas ventanas de trabajo con vista en planta, elevación o en 3D. Lo primero es definir los ejes de la estructura que serán definidos en el plano por los ejes de las vigas y al momento de dibujar las columnas, estas se encuentran desfasadas de su centroide a dicho eje pueden ser movidas mediante la opción Insert Point, esta herramienta solo mueve la columna a una distancia determinada, pero solo para tener una buena presentación del modelado porque no influye algún cambio en el análisis, ya que se tiene que activar la opción de no cambiar la rigidez del elemento: por lo tanto, es opcional y no obligatorio al momento de modelar los elementos estructurales. (21)

Respecto a la altura del primer entrepiso, será considerada desde el Nivel del Terreno Natural hasta la cara superior de las vigas porque la parte inferior al Nivel del Terreno natural será considerado empotrado, esta zona considera desplazamientos debido al sismo y no aceleraciones como lo hace la estructura (Ver Figura 21).

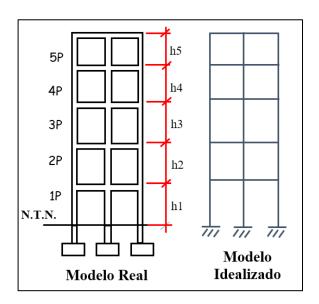


Figura 21: Modelo Real vs Modelo Idealizado.

El software ubica las vigas por debajo del eje de entrepiso; por lo tanto, la altura para los pisos superiores será la altura entre caras superiores de vigas (Ver Figura 22).

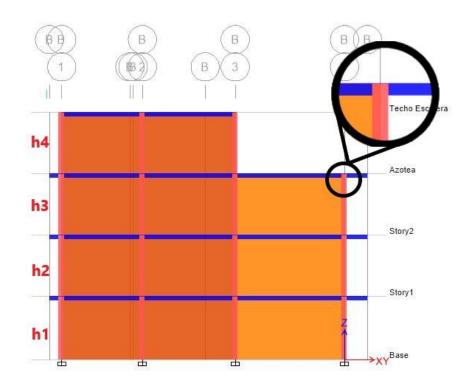


Figura 22: ETABS - Ubicación de Vigas Modeladas bajo el Eje de Entrepiso.

Los materiales a usar como concreto armado, albañilería y acero estructural con las características ya escritas anteriormente (Ver Figuras 23, 24 y 25):

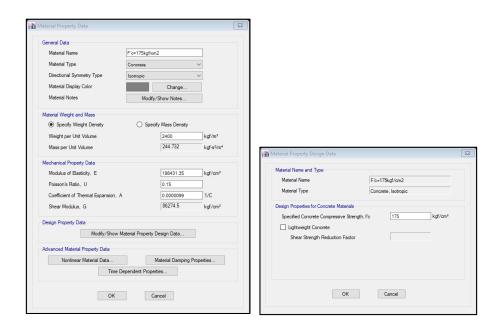


Figura 23: ETABS - Características del material de Concreto Armado con una Resistencia a la Compresión de 175kgf/cm² (17,5MPa).

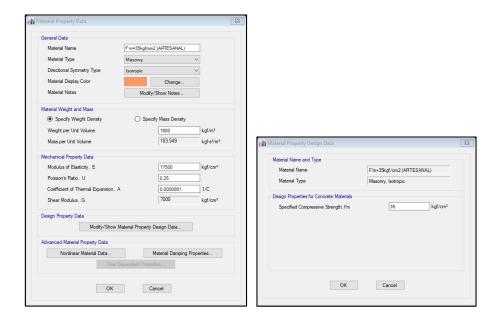


Figura 24: ETABS - Características del material de Albañilería Confinada con una Resistencia a la Compresión de 35kgf/cm² (3,5MPa).

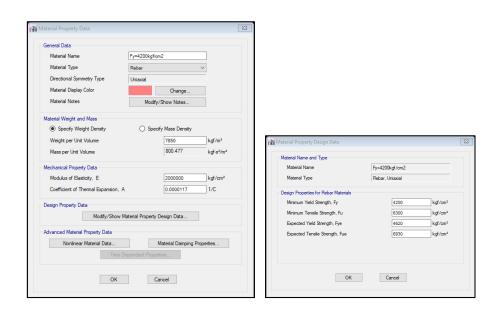


Figura 25: ETABS - Características del material de Acero de Refuerzo - Grado 60.

Se definen los elementos Frame (armadura) que son vigas y columnas, cada uno de estos elementos son definidos con sus propiedades del material (f'c=210kgf/m² - 21Mpa y fy=4200kgf/m² - 420MPa) y sus propias dimensiones de peralte y base (Depth and Width) y tipo de elemento (Beam and Column).

En el caso de las vigas, se debe definir la altura al centroide de las barras longitudinales – peralte efectivo (Cover to Longitudinal Rebar Group Centroid), para ello resulta un valor de 5.75cm (4cm de recubrimiento + espesor de un estribo de 3/8" (0.9525cm) + centroide de una varilla de 5/8" (0.79375cm) = 5.75cm); en cambio para las columnas se necesita colocar 4cm para el recubrimiento libre de las barras de confinamiento - estribos (Clear Cover for Confinement Bars) además de selecciona la opción para ser revisado y así no utilizar mucha capacidad computacional al momento de analizar cada edificio (Reinforcement to be Cheked), como también no es necesario indicar los aceros utilizados en cada viga o columna, ya que ello es para un análisis no lineal (Pushover) (Ver Figuras 26 y 27).

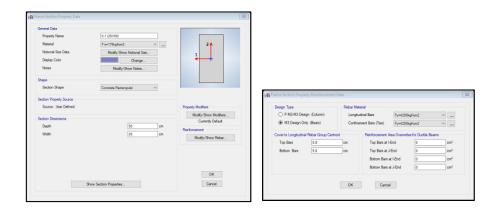


Figura 26: ETABS - Definición de la Viga de 25x50cm.

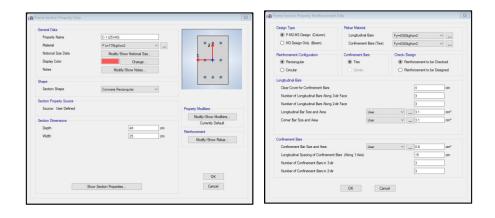


Figura 27: ETABS - Definición de la Columna de 25x40cm.

Se tienen también los elementos Slab (losa); en el caso de la creación de losas aligeradas se usará el tipo de elemento Ribbed (nervado) que necesitará de las medidas de peralte total de losa (Overall Depth), el espesor de la losa superior de 5cm (Slab Thickness), el ancho de la viga en la parte baja y superior respectivamente de 10cm (Stem Width at Top and Bottom), el espaciamiento entre ejes de viguetas de 40cm (Rib Spacing), la dirección del aligerado que puede ser en el eje local 1 (Dirección X-X) o eje local 2 (Dirección Y-Y) y, por último, habilitar la opción de distribución de carga unidireccional (Use Special One-Way Load Distribution) que es encargada de distribuir la CM asignada a las losas sobre las vigas en función del área tributaria que poseen (Ver Figura 28).

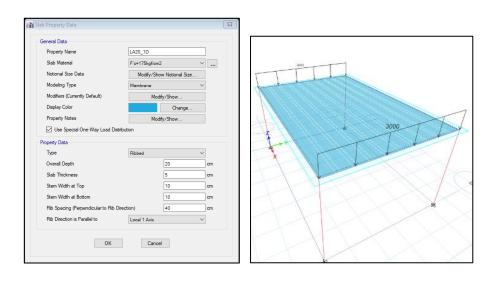
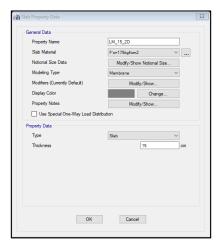



Figura 28: ETABS - Definición de la Losa Aligerada Unidireccional de 20cm. como Elemento Membrana.

Para las losas macizas bidireccionales, se usarán del mismo modo el tipo de modelado membrana y así poder distribuir la carga en función a la dirección en que está definida la losa, además de definir el espesor (Thickness) y el tipo de propiedad del elemento Slab (losa) (Ver Figura 29)

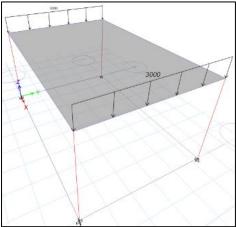
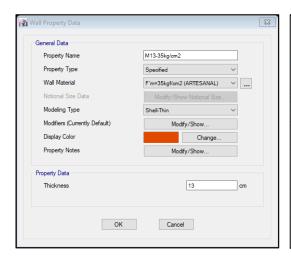



Figura 29: ETABS - Definición de la Losa Maciza Bidireccional.

Otro elemento a definir son los muros portantes que serán creados definiendo el material (f'm=65 – 6.5MPa o 35kgf/m² – 3.5MPa), el tipo de modelado será Shell-Thin, porque no considerará los efectos de corte, ya que estos son muy pequeños en un muro y definir el espesor que puede ser de 13cm o 23cm (Ver Figura 30).

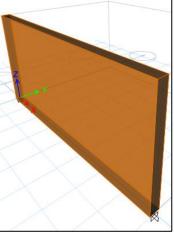


Figura 30: ETABS - Definición del Muro Portante de Albañilería Confinada.

El software fue creado exclusivamente para la modelación de edificaciones, por ello que posee herramientas didácticas y fáciles de utilizar; con los elementos estructurales ya definidos, se procede a dibujarlas en planta, altura o en vista 3D (Ver Figura 31), excepto la escalera, ya que podría crear torsión por la rigidez que aporta, además

en un sismo se agrietaría por la falta de confinamiento y al disminuir su rigidez los demás elementos resistentes deberían de soportar la fuerza sísmica, por lo que los muros no estarían listos para soportar una fuerza sísmica mayor a la que fue diseñada, considerando el aporte de rigidez de la escalera es por ello que se deja el área libre.

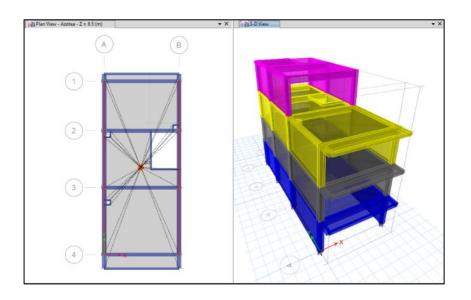


Figura 31: ETABS - Vista en Planta (Izquierda) y Vista 3D (Derecha) de la Vivienda Informal CH-1

2.2.5.2 Análisis Estructural - ETABS v.16.2.1

El software hace el análisis de la modelación matemática matricialmente:

[M].
$$\{\ddot{x}\} + [c]$$
. $\{\dot{x}\} + [k]$. $\{x\} = \{F(t)\} = -\{m\}\ddot{x}_g(\tau)$

Donde:

- [M]. {x}: Fuerza Inercial.

- [C]. {x}: Fuerza de Amortiguamiento.

- [K]. {x}: Fuerza Elástica.

- $\{F(t)\} = -\{m\}\ddot{x}g(\tau)$: Fuerza Excitadora.

Luego de haber modelado cada uno de los elementos estructurales que conformarán la edificación, se deben definir y asignar los siguientes criterios:

Realizar la asignación de diafragmas rígidos en las losas de cada entrepiso para transferir las fuerzas laterales (sísmicas) a los elementos verticales del sistema estructural, se asignará un diafragma rígido con nombre distinto para cada nivel, así como al techo de la escalera mediante el uso de la asignación mediante áreas (Ver Figura 32).

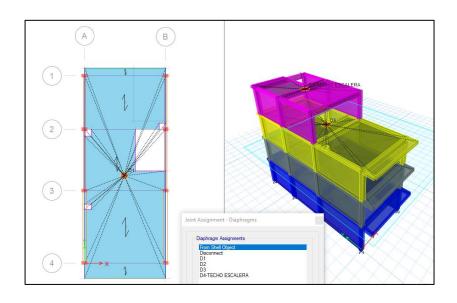


Figura 32: Definición y Asignación de Diafragmas Rígidos en cada Entrepiso de la Vivienda CH-1.

Asignar los brazos rígidos en las uniones viga – columna con un valor máximo de 0.5 según el manual de ETABS; en este punto, se debe colocar la opción automática para que así el software considere al momento de metrar el peso de las columnas la altura total hasta cada entrepiso y en caso de las vigas la distancia a la cara de cada columna, con ello evitar la redundancia del peso en la intersección columna-viga (Ver Figura 33).

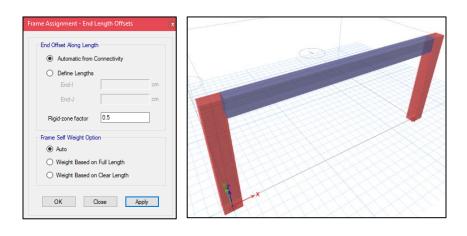


Figura 33: Asignación de Brazos Rígidos en la Estructura de Forma Automática con un Factor de 0.5.

Definir los patrones de carga: PESO PROPIO (Dead) que poseerá el valor de 1 en el cuadro de Multiplicador de Peso Propio, CM (Super Dead) correspondiente a una carga distribuida (kgf/m²) del peso de acabados, tabiquería y una carga lineal (kgf/m) sobre las vigas que reciben el peso del parapeto que se ubica en la azotea (Ver Figura 34). Además de estas cargas muertas, se tienen el peso de la escalera, así como del tanque elevado que en su mayoría es ubicado sobre el techo de la escalera.

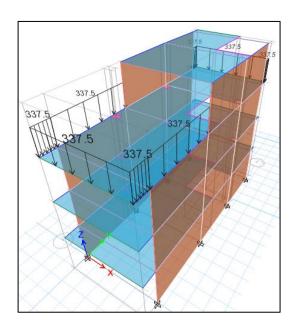


Figura 34: Asignación de la Carga Muerta del Parapeto en la Azotea como una Carga por Unidad de Longitud.

Para el caso de la CV (Reducible Live) definidas en la Tabla N°1 de la Norma E.020 "Cargas" referente a la carga viva mínima repartida, la cual depende del uso de la edificación (Ver Tabla 21):

Tabla 21: Cargas Vivas Mínimas Repartidas.

Tabla 1 CARGAS VIVAS MÍNIMAS REPARTIDAS		
OCUPACIÓN O USO	CARGAS REPARTIDAS kPa (kgf/m²)	
VIVIENDAS	2.0 (200)	
Corredores y escaleras	2.0 (200)	

Fuente: Norma Técnica E.020 "Cargas" - 2006.

CVT (Roof Live) de la misma Norma la cual indica en función al ángulo de inclinación con respecto a la horizontal:

- Θ ≤ 3° \rightarrow CVT = 100kgf/m².
- Θ > 3° → CVT = 100kgf/m² 5kgf/m²*(Θ -3) hasta un mínimo de 50kgf/m².

Se crearán también los patrones de carga referentes a las direcciones longitudinal (Y-Y) y transversal (X-X) del Sismo Estático (SEST_) (Ver Figura 35), considerando una excentricidad accidental de 0.05 tanto positiva (X Dir + Eccentricity) como negativa (X Dir - Eccentricity); he aquí donde se hace uso del coeficiente de V_{BASAL} (Z*U*C*S/R) así como el valor k (exponente de altura del edificio) y definir el rango de los pisos que serán considerados para el análisis (Base hasta Techo de Escalera), se considera hasta el Techo de Escalera para que se considere el peso de este techo, las columnas y vigas que lo sostienen así como el diafragma rígido asignado para poder observar los resultados de su desplazamiento en las tablas dinámicas que el software brinda (Ver Figura 36).

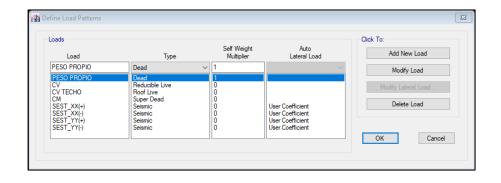


Figura 35: ETABS - Definición de Patrones de Carga.

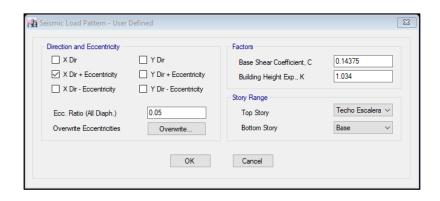


Figura 36: ETABS - Definición del Patrón de Carga Sísmica para la Dirección X con el 5% de Excentricidad Accidental Positiva.

Definir la combinación para estimar el peso, el cual está en función de la categoría a la cual pertenece la edificación a analizar, se activa la casilla de masa propio del elemento con lo cual el software calcula en base a las secciones y dimensiones de cada viga, columna, losa y muros el peso de estos; también se especifica los patrones de carga "CV" y "CVT" que serán reducidos (Ver Figura 37).

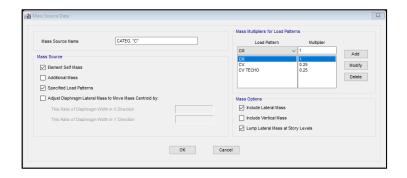


Figura 37: ETABS - Definición del Peso Sísmico.

Por otro lado, el análisis dinámico necesita de un espectro de pseudo - aceleraciones en cada una de las direcciones de análisis de la estructura, para ello el software posee una tabla donde completando los valores requeridos calcula es espectro requerido (Ver Figura 38).

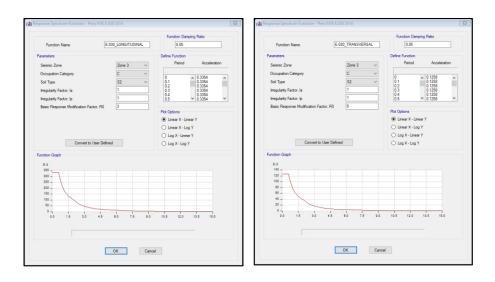


Figura 38: Definición del Espectro de Pseudo Aceleraciones en la Dirección Longitudinal (Izquierda) y para la Dirección Transversal (Derecha).

Además de ello definir el caso modal con el número máximo y mínimo de modos necesarios para cumplir que la suma de sus masas efectivas sea mayor o igual al 90% (Ver Figura 39).

Figura 39: Definición del Análisis Modal con un Mínimo Número de 3 Modos.

Seguidamente, crear los casos de carga (SDIN_) para la dirección transversal (X-X) y longitudinal (Y-Y) definiéndolo en función del espectro de pseudo - aceleraciones y un factor de escala de la aceleración de la gravedad 9.80665cm/s², con el uso del método de combinación modal establecida en la Norma E.030: la combinación cuadrática completa (CQC – Complete Quadratic Combination) que necesita el valor de fracción del amortiguamiento crítico (Modal Damping) de 0.05 y la excentricidad accidental en cada caso aplicado a todos los diafragmas asignados (Ver Figura 40).

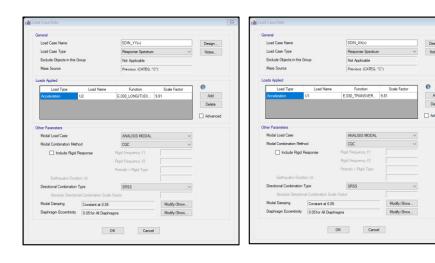


Figura 40: Definición del Caso de Carga para el Análisis Dinámico Modal Espectral en la Dirección Longitudinal (Izquierda) y para la Dirección Transversal (Derecha).

Con el uso de tablas dinámicas, que pueden ser exportadas en una hoja Excel, se obtienen los resultados de cada análisis para proceder a su validación estructural ya detallada anteriormente. (Ver Figura 41)

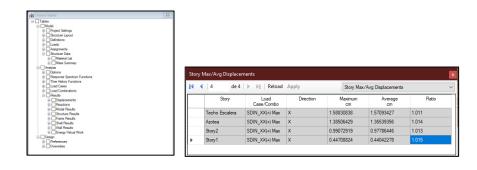


Figura 41: ETABS - Tablas Dinámicas con Datos de la Estructura y Resultados del Análisis Estructural (Izquierda) y Tabla de Máximos Desplazamientos de Entrepiso (Derecha).

Además de poseer la opción de visualizar en tabla, también se pueden obtener gráficas de línea eligiendo el caso de carga sísmica: las fuerzas sísmicas en cada nivel (Auto Lateral Loads to Stories), desplazamiento del Centro de Masas (Diaphragm CM Displacement), Máximos Desplazamientos por nivel (Maximum Story Displacement), Máximas Derivas por nivel (Maximum Story Drifts), Fuerzas Cortantes por nivel (Story Shears), Momentos de Volteo por nivel (Story Overturning Moment) y Rigideces por nivel (Story Stiffness) (Ver Figuras 42 y 43).

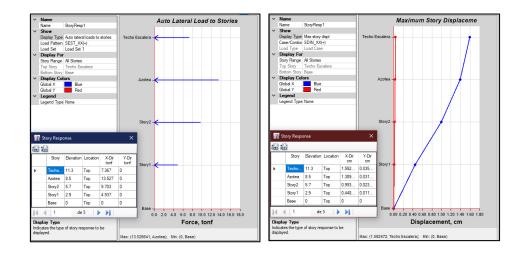


Figura 42: Gráfica de las Fuerzas Sísmicas para un Análisis Estructural Estático en la dirección X (Izquierda) y la Gráfica de los Máximos Desplazamientos en cada Nivel para un Análisis Estructural Dinámico en la misma Dirección (Derecha).

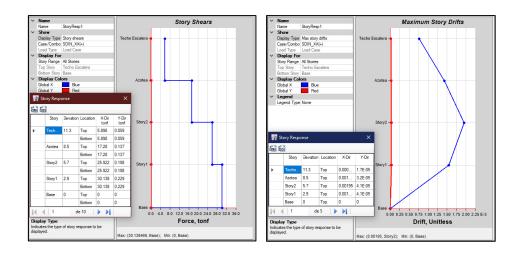


Figura 43: Diagrama de Fuerzas Cortantes (Izquierda) y la Gráfica de las Máximas Derivas en cada Nivel para un Análisis Estructural Dinámico en la Dirección X (Derecha).

2.3 Definición de Términos Básicos

- Columna: Elemento con una relación entre altura y menor dimensión lateral mayor que tres, usado principalmente para resistir carga axial de compresión. (14)
- Muro Estructural: Elemento estructural, generalmente vertical, empleado para encerrar o separar ambientes, resistir cargas axiales de gravedad y resistir cargas perpendiculares a su plano proveniente de empujes laterales de suelo o líquidos. (14)
- Muro de Corte o Placa: Muro estructural de concreto armado diseñado para resistir combinaciones de fuerzas cortantes, momentos y fuerzas axiales inducidas por cargas laterales. (14)
- Muro Portante: Muro diseñado y construido en forma tal que pueda transmitir cargas horizontales y verticales de un nivel al nivel inferior o a la cimentación. Estos muros componen la estructura de un edificio de albañilería y deberán tener continuidad vertical. (22)
- Análisis Estructural Lineal: Este análisis es usado considerando la hipótesis de que la estructura poseerá una actividad elástica y lineal, por ello los materiales como son el concreto armado en el ámbito de esfuerzo y deformación se deberán encontrar en el rango elástico, lo que significa que, ante un evento sísmico, deben retornar a su forma original, lo cual proporciona el principio de que la estructura pueda colapsar. (23)
- Comportamiento Estructural: Define como se comportará una estructura frente a la acción de un sismo, nieve, viento o entre otras fuerzas que le afecten; dicho comportamiento puede ser cuantificado mediante el cálculo de los desplazamientos que se tiene en cada piso con el uso del análisis estructural lineal y cabe señalar que también está en función del proceso constructivo correcto y materiales de calidad. (24)
- Desplazamientos Laterales Elásticos e Inelásticos: Son los desplazamientos obtenidos resultado de la aplicación de una fuerza sísmica en la base de la

estructura (V_{BASAL}), dichos desplazamientos se encuentran en el rango elástico debido al factor de reducción R y se convierten en inelástico al ser multiplicados por 0.85*R si la estructura es irregular o por 0.75*R si es regular. (12)

- Distorsión de Entrepiso: Es la relación entre el desplazamiento relativo obtenido en cada nivel de la edificación y la altura de esta, para lo cual la Norma E.030 propone sus límites en función del material predominante. (12)
- Factores de Irregularidad: Las irregularidades en altura y en planta tiene unos factores que modifican en valor de R inicial, con uso de la siguiente fórmula R = Ro x la x lp; estos factores son obtenidos al evaluar los resultados de la hipótesis del Análisis. (12)
- Restricciones a la Irregularidad: Se posee estas restricciones de acuerdo a la categoría y zona de la estructura, que son evaluadas según las irregularidades o irregularidades extremas que posee; de no cumplir con estas restricciones significaría una validación estructural errónea. (12)
- Separación entre Edificios: Es la división mínima que se debe tener entre viviendas o si fuese el caso al límite de terreno tercero, dicha separación provee el espacio necesario para prevenir el contacto de estas edificaciones durante un evento sísmico. (25)
- Sismo: La tierra posee internamente demasiada energía la cual al ser generada y liberada se propaga en forma de ondas que posteriormente llegan a la superficie y son medidas mediante estaciones sísmicas instaladas por el IGP en el Perú. (26)
- Software ETABS v.16.2.1: ETABS es un software aplicado en la Ingeniería que es de gran ayuda para el análisis estructural tanto lineal como no lineal, como también para el diseño en concreto armado. (21)

CAPÍTULO III METODOLOGÍA

3.1 Método y Alcance de la Investigación

Se usó como método general el científico, ya que se consideraron las cinco etapas básicas, las cuales son:

- a) Planteamiento del problema
- b) Estructura del marco teórico
- c) Enunciación de la hipótesis tanto general como específica
- d) Validación de las hipótesis
- e) Discusión de los resultados

El alcance de la tesis es descriptivo, debido a que se cuenta con solo una variable a analizar y sin ser manipulada.

3.2 Diseño de la Investigación

El diseño de la investigación es no experimental, porque no se realiza alguna manipulación de la variable; por ello, el análisis estructural estático y dinámico de las viviendas se realizará partiendo de los planos obtenidos, los cuales fueron elaborados por terceros.

3.3 Población y Muestra

3.3.1 Población

No se tiene una cuenta total de las viviendas informales, pero, según el Plan Urbano de Huancayo 2006-2011, un 31.78% del total de hectáreas de suelos lo cubren las viviendas, de las cuales un porcentaje son viviendas construidas informalmente, ya que solo se guían con los planos y no con la supervisión de un profesional. Por todo lo ya mencionado, la población está conformada por las viviendas informales ubicadas en Huancayo Metropolitano, las cuales utilizan comúnmente en la dirección longitudinal muros de albañilería y columnas poco resistentes en la dirección transversal.

3.3.2 Muestra

La muestra es no probabilística por conveniencia, ya que suponen un procedimiento de selección orientado por las características de la investigación, más que por un criterio estadístico de generalización. (27)

Para ello, se tomarán como muestra a 15 planos de viviendas informalmente ubicadas en los distritos de investigación: Huancayo, El Tambo y Chilca. Estas viviendas son las siguientes (Ver Tabla 22 y Anexo 5):

Tabla 22: Base de Datos de las Viviendas Informales en Huancayo Metropolitano.

CÓDIGO	UBICACIÓN	AÑO DE CONSTRUCCIÓN	NÚMERO DE PISOS	ALTURA TOTAL (m)			
ET-1		MARZO 2011	3 PISOS + AZOTEA	11.05			
ET-2		FEBRERO 2014	3 PISOS + AZOTEA	11.25			
ET-3	EL TAMBO	ENERO 2011	2 PISOS + AZOTEA	8.35			
ET-4		FEBRERO 2017	3 PISOS + AZOTEA	11.10			
ET-5		MARZO 2017	4 PISOS + AZOTEA	14.25			
HU-1		MAYO 2014	3 PISOS + AZOTEA	11.00			
HU-2		JUNIO 2013	3 PISOS + AZOTEA	11.25			
HU-3	HUANCAYO	MAYO 2016	3 PISOS + AZOTEA	10.95			
HU-4		JUNIO 2014	3 PISOS + AZOTEA	11.05			
HU-5		JUNIO 2017	2 PISOS + AZOTEA	8.10			
CH-1		JULIO 2017	3 PISOS + AZOTEA	11.30			
CH-2		JULIO 2017	5 PISOS + AZOTEA	17.20			
CH-3	CHILCA	NOVIEMBRE 2017	3 PISOS + AZOTEA	10.75			
CH-4]	MAYO 2017	5 PISOS + AZOTEA	17.50			
CH-5		JUNIO 2017	2 PISOS + AZOTEA	8.75			

3.4 Técnicas e Instrumentos de Recolección de Datos

3.4.1 Técnicas de Recolección de Datos

Como menciona Ander - Egg, la observación es la técnica de recopilación de datos más antigua y al mismo tiempo la más confiable, en cuanto sirve para recoger datos e informaciones para verificar hipótesis. (28)

Para identificar y analizar las viviendas informales con sistema estructural mixto, se utilizaron dos hojas de Excel, de las cuales primero se tomarán notas en una ficha de campo que tiene como objetivo identificar las viviendas de análisis en base a sus planos de arquitectura y estructura; y la ficha de gabinete que serán hojas de cálculo con la finalidad de obtener el coeficiente de cortante basal (c), análisis de irregularidades y el espectro dinámico de la edificación; para luego proceder con el análisis estático y dinámico mediante el software ETABS.

3.4.2 Instrumentos de Recolección de Datos

- Ficha de Campo:

Esta ficha registró la configuración estructural de cada vivienda por analizar, definiendo en qué dirección se tiene un sistema estructural de pórticos y en cuál un sistema estructural de albañilería confinada mediante el uso de la observación, lo cual será verificado mediante la obtención de los planos de arquitectura y estructuras, además de la ubicación, año de construcción, número de pisos, uso de la estructura, altura total, tipo de suelo, espesor de muros portantes, tipo de ladrillo utilizado, tipo de losa y dirección, y, por último, si posee o no las juntas sísmicas (Ver Figura 44).

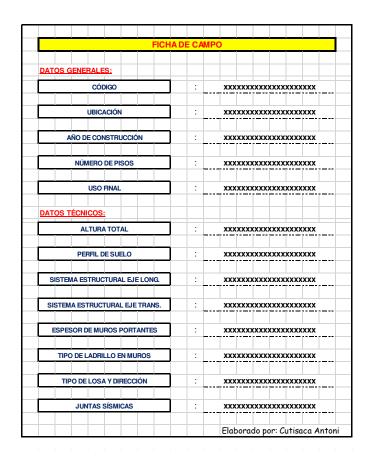


Figura 44: Ficha de Campo para cada Vivienda Informal.

- Ficha de gabinete:

Ya con los datos obtenidos previamente y los planos estructurales de cada vivienda se generarán las fichas de gabinete, que son hojas en el software Excel para realizar los respectivos cálculos de los pasos descritos tanto para el análisis estructural estático y el dinámico, mediante el uso del software ETABS v.16.2.1; entre las más importantes están el coeficiente de cortante basal (c), análisis de irregularidades y la validación estructural de cada vivienda; todo lo mencionado bajo la guía de los pasos que indica la Norma E 0.30-2019.

- Confiabilidad del Estudio

Y se calculó el siguiente coeficiente de confiabilidad con 15 muestras que son las viviendas informales y 12 ítems relacionados a los resultados de la validación estructural. (Ver Anexo 6)

Se usó Alfa de Cronbach que dio como resultado un valor de 0.822, lo que representa una elevada confiabilidad del estudio. (Ver Tabla 23)

Tabla 23: Confiabilidad del Estudio - IBM SPSS 25 Statistics.

Resumen de procesamiento de casos

		N	%
Casos	Válido	15	100.0
	Excluido ^a	0	.0
	Total	15	100.0

a. La eliminación por lista se basa en todas las variables del procedimiento.

Estadísticas de fiabilidad

Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizad os	N de elementos
.822	.825	8

CAPÍTULO IV ANÁLISIS ESTRUCTURAL

4.1 Descripción General

4.1.1 Características Básicas

Las 15 viviendas a analizar están distribuidas equitativamente: 5 viviendas en cada distrito de Huancayo Metropolitano, todas ellas con el uso de vivienda familiar. Una información importante para la validación estructural de estas viviendas es el año en el que fueron construidas y así relacionar esta fecha con los años en que se publicaron las actualizaciones de la norma E.030. Como resultado, se obtuvo que la mayoría de las viviendas fueron construidas en el año 2017, así como se tienen algunas desde el año 2011 (Ver Tabla 24 y Figura 45).

Tabla 24: Año de Construcción de las Viviendas Informales y Actualización de la Norma E.030.

t _						
AÑO DE CONSTRUCCIÓN Y ACTUALIZACIÓN DE LA NORMA E.030						
AÑO DE CONSTRUCCIÓN	N° DE VIVIENDAS INFORMALES	%				
2011	2	13%				
2013	1	7%				
2014 3 20%						
24/01/16 Modificació	n Norma E.030 (DS N°003-20	16-VIVIENDA)				
2016	1	7%				
2017 8 53%						
11/02/19 Modificación Norma E.030 (RM N°043-2019-VIVIENDA)						
<u>TOTAL</u>	<u>15</u>	<u>100%</u>				

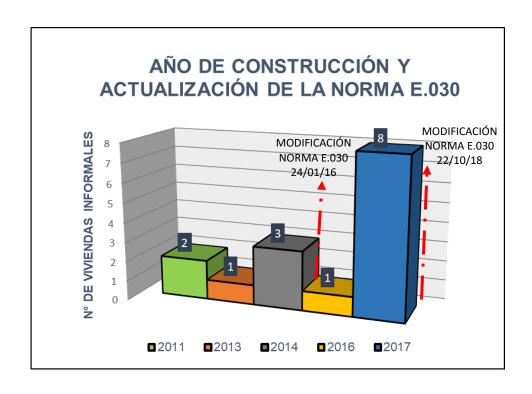


Figura 45: Año de Construcción de las Viviendas Informales y Actualización de la Norma E.030.

Otro dato básico a identificar es el número de pisos de cada vivienda y la ubicación de éstas; se puede apreciar viviendas desde 2 a 5 pisos, pero la mayor cantidad de viviendas son de 3 pisos (Ver Tabla 25 y Figura 46).

Tabla 25: Número de Pisos de las Viviendas Informales.

NÚMERO DE PISOS								
N° DE PISOS	UBICACIÓN	N° DE VIVIENDAS INFORMALES	%					
Dos Pisos	El Tambo y Huancayo	3	20%					
Tres Pisos	El Tambo, Huancayo y Chilca	9	60%					
Cuatro Pisos	El Tambo	1	7%					
Cinco Pisos	Chilca	2	13%					
<u>TO</u> -	ΓAL	<u>15</u>	<u>100%</u>					

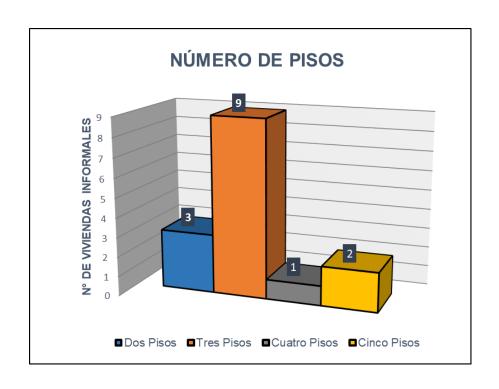


Figura 46: Número de Pisos de las Viviendas Informales.

4.1.2 Tipologías Estructurales

Las 15 viviendas tienen en común el uso de un sistema estructural mixto; además, se valida el Artículo 17 de la Norma E.030, que menciona que, para edificaciones de la categoría "C" y ubicadas en la Zona 3, se permite el uso de cualquier sistema estructural, el cual para estos casos está definido en la dirección transversal el uso de pórticos con columnas muy pequeñas acompañadas de tabiques aislados con planchas de tecnopor, además que la rigidez de todos los elementos no estructurales no fue considerada porque se afectó el período fundamental por un valor de 0.85. Y, en la dirección longitudinal, muros portantes de albañilería confinada; este dato es obtenido de los planos estructurales y como dato inicial para la modelación de la estructura, además que al ser sistemas estructurales con un material distinto se obvia verificar el porcentaje que menciona el numeral 16.1 de la norma, ya que esta solo aplica para elementos de concreto armado como son columnas y placas, estas últimas que no poseen ninguna de las viviendas (Ver Figura 47).

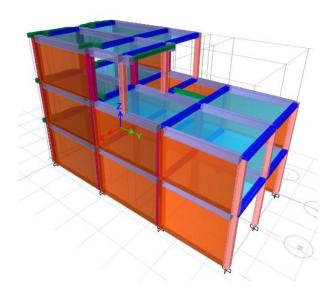


Figura 47: Modelado en 3D de la Vivienda Informal en el Software ETABS.

En relación a los muros portantes de albañilería confinada, cabe resaltar el espesor que fue utilizado para proporcionar la rigidez necesaria en la dirección longitudinal. Se puede hacer uso de un aparejo de soga con un espesor de muro de 13cm o de uno de cabeza con muros de 23cm; todas las viviendas hicieron uso de ladrillos artesanales. Los porcentajes del espesor de muro utilizado son los siguientes (Ver Tabla 26 y Figura 48):

Tabla 26: Espesor de los Muros Portantes de las Viviendas Informales.

ESPESOR DE MUROS PORTANTES							
APAREJO DE LADRILLOS KING N° DE VIVIENDAS KONG ARTESANAL INFORMALES %							
Aparejo de soga - 13cm	13	87%					
Aparejo de cabeza - 23cm	2	13%					
<u>TOTAL</u>	<u>15</u>	<u>100%</u>					

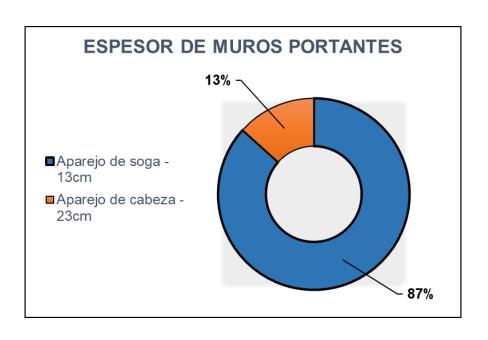


Figura 48: Espesor de los Muros Portantes de las Viviendas Informales.

Un último punto con referencia a la tipología de las viviendas es la dirección de la losa aligerada unidireccional de cada entrepiso; en este punto, al tener muros portantes, es muy importante que se transfiera la carga de las viguetas de la losa a estos, pero este concepto no fue considerado en algunas de las viviendas construidas y además algunas viviendas optaron por usar losa maciza en el techo de la azotea, la cual cubre la escalera. Se puede apreciar el porcentaje de viviendas con la dirección de losa aligerada utilizada (Ver Tabla 27 y Figura 49).

Tabla 27: Dirección de la Losa Aligerada Unidireccional de las Viviendas Informales.

DIRECCIÓN DE LA LOSA ALIGERADA UNIDIRECCIONAL						
EJE DE ANÁLISIS	N° DE VIVIENDAS INFORMALES	%				
Transversal - Sobre Muros Portantes de Albañilería Confinada	9	60%				
Longitudinal - Sobre Vigas de los Pórticos	6	40%				
<u>TOTAL</u>	<u>15</u>	<u>100%</u>				

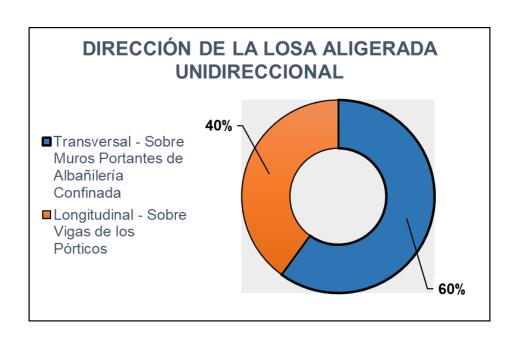


Figura 49: Dirección de la Losa Aligerada Unidireccional.

4.2 Microzonificación Sísmica de Huancayo Metropolitano

Según el Artículo 11 de la Norma E.030, indica que estos estudios de microzonificación sísmica nos dan las limitaciones y exigencias que se deben considerar para el diseño, construcción de edificaciones y otras obras (12); por ello, en junio de 2011, se realizó el proyecto INDECI PNUD PER /02/ 051 CIUDADES SOSTENIBLES - "Plan De Usos Del Suelo Ante Desastres Y Medidas De Mitigación De La Ciudad De Huancayo", donde se puede ubicar los resultados del estudio realizado en el Capítulo 4.1.3.

Se dividió Huancayo Metropolitano en 3 microzonas, resultado de los 21 Ensayos Estándar de Penetración (SPT), indicado en el Artículo 12 "Condiciones Geotécnicas" de la Norma E.030 en los distritos de Huancayo, El Tambo y Chilca. Este ensayo nos permite conocer la capacidad portante del suelo, lo cual para el ciudadano es de gran ayuda, ya que sabrá sobre qué tipo de suelo serán cimentadas sus futuras viviendas; adicionalmente a estos sondajes, se consideró la información que la Municipalidad de Huancayo posee de las obras de gran importancia que fueron construidas con anterioridad.

Un dato importante del cálculo de la capacidad portante fue calculado para una zapata cuadrada con largo y ancho de 1,20m y profundidad de cimentación (Df) de

1,20m; además que los ensayos fueron realizados en los meses de crecida (Enero – Marzo), donde se tiene la máxima intensidad pluvial; con ello, estos análisis fueron realizados en las condiciones más críticas (Ver Tabla 28 y Anexo 5). El resultado de esta microzonificación es el siguiente:

Tabla 28: Datos de Sondeos en Huancayo Metropolitano.

DATOS DE SONDEOS DEL ESTUDIO: "MAPA DE PELIGROS, PLAN DE USOS DEL SUELO ANTE DESASTRES Y MEDIDAS DE MITIGACIÓN DE LA CIUDAD DE HUANCAYO, JUNIO 2011"								
	,	COOR	DENAD.	,				TIPO DE SUELO
DISTRITO	CÓDIGO	Х	Υ	UBICACIÓN	Qadm	Prof.	SÍMB. (SUCS)	DESCRIPCIÓN
	S-1	474364	8668206	Terminal Huancayo	3,85	3,00	GP	Grava Mal Graduada
	S-2	476639	8669156		3,85	3,00	GP-GM	Grava Mal Graduada Limosa
	S-3	476950	8668137	Urb. Siglo XX	2,60	3,00	GM	Grava Limosa
EL TAMBO	S-4	476490	8667101	Parque Bolognesi	4,65	3,00	GM	Grava Limosa
	S-5	476383	8666386	Parque Cáceres	5,83	3,00	GP	Grava Mal Graduada
	S-6	474384	8667710	Parque Puentes- SUNARP	6,42	3,00	GP-GM	Grava Mal Graduada Limosa
	S-7	474037	8667218	Urb. Agua Virgen	2,60	3,00	GP	Grava Mal Graduada
	S-9	475173	8664722	Parque La Rivera	1,08	3,00	ML	Limos
	S-10	477406	8666918	Puente Centenario	2,24	3,00	SM	Arena Limosa
	S-11	478250	8668145	Conj. Habit. FONCODES	2,52	3,00	GM	Grava Limosa
HUANCAYO	S-12	479253	8669100	Urb. El Trébol	1,09	3,00	ML - CL	Limo Arcilloso
TIOANCATO	S-13	478683	8668008	Clínica Municipal	1,01	3,00	ML - CL	Limo Arcilloso
	S-14	478894	8667734	Urb. Los Sauces	1,54	3,00	GM	Grava Limosa
	S-15	479520	8667783	Urb. Santa Isabel	1,03	3,00	ML - CL	Limo Arcilloso
	S-16	479600	8670622	Alcalá	1,31	3,00	SM - SC	Arena Limo Arcillosa
	S-17	479344	8665455	Parque Peñaloza	1,54	3,00	SM	Arena Limosa
CHILCA	S-18	477266	8663476	Estado Chilca	1,31	3,00	SM	Arena Limosa
CHILCA	S-19	476144	8663782	Parque Auquimarca	1,20	3,00	SM - SC	Arena Limo Arcillosa
	S-20	477068	8664310	Parque Puzo	1,09	3,00	CL	Arcilla Orgánica

Fuente: Mapa de Peligros, Plan de Usos del Suelo ante Desastres y Medidas de Mitigación de la Ciudad de Huancayo (El Tambo, Huancayo y Chilca), junio 2011 – Proyecto INDECI PNUD PER/02/051.

Adicionalmente a este estudio, se recolectaron Estudios de Mecánica de Suelos para cada distrito, estos estudios hacen uso del ensayo de Corte Directo ASTM D-3080 para la obtención del valor de cohesión y el ángulo de fricción (Ø) de cada suelo; con estos resultados, se realiza el diseño por seguridad global que se basa en los criterios que considera Terzaghi y Vesic, obteniendo la capacidad última del terreno en función a las características de la cimentación como son tipo, largo, ancho y profundidad de cimentación. Esta capacidad al ser dividida sobre el factor de

seguridad igual a 3 se obtiene la capacidad admisible para el suelo ensayado (Ver Tabla 29 y Anexo 5).

Tabla 29: Datos de EMS de Diversas Edificaciones - Ensayo de Corte Directo ASTM D-3080, Huancayo Metropolitano.

DATOS DE ESTUDIOS DE MECÁNICA DE SUELOS DE DIVERSAS EDIFICACIONES - ENSAYO DE CORTE DIRECTO ASTM D-3080 REALIZADOS EN HUANCAYO METROPOLITANO								
		COORD	ENADAS				Т	IPO DE SUELO
DISTRITO	CÓDIGO	Х	Υ	UBICACIÓN	Qadm	Prof.	SÍMB. (SUCS)	DESCRIPCIÓN
	MET-1	474110	8668096	Av. Los Álamos MZ-4 LT- 14	2,33	3,00	GC	Grava Arcillosa
	MET-2	475286	8668243	Prolong. Libertad 2460	2,91	3,00	GM	Grava Limosa
EL TAMBO	MET-3	475757	8669183	Psje- Aries 198 - Umuto	2,84	3,00	GM	Grava Limosa
LL TAINIDO	MET-4	476331	8667088	Comisaría PNP - El Tambo	1,86	1,80	SM	Arena Limosa
	MET-5	476375	8666948	Jirón Arequipa 912	3,74	3,00	GP	Grava Mal Graduada
	MET-6	476097	8666814	IE Mariscal Castilla	3,32	3,00	GM	Grava Limosa
	MHU-1	476000	8665117	IE Santa María Reyna	2,74	1,60	GW	Grava Bien Graduada
	MHU-2	476696	8665331	Jirón Tacna 551	1,92	1,00	ML-SP	Limo Arenoso
	MHU-3	478081	8665179	IE Nuestra Señora de Cocharcas	3,83	3,00	GM	Grava Limosa
HUANCAYO	MHU-4	478634	8665707	Posta de Salud - Ocopilla	1,66	3,50	SM	Arena Limosa
	MHU-5	478052	8666989	IE Santa Isabel	3,77	1,50	GP - GC	Grava Mal Graduada Arcillosa
	MHU-6	479194	8668287	Residencial Monte Alto	2,66	1,50	GC	Grava Arcillosa
	MHU-7	478578	8669048	Anexo de Palián	1,44	2,50	ML - CL	Limo Arcilloso
	MCH-1	476990	8664242	Av. Leoncio Prado y Av. Ferrocarril	1,03	3,50	GC	Grava Arcillosa
	MCH-2	477836	8664652	Academia CEPRE - Chilca	0,98	3,00	CL	Arcilla Inorgánica
CHILCA	MCH-3	478239	8664872	Av. Jacinto Ibarra y Av. Leoncio Prado	1,25	3,50	GM	Grava Limosa
	MCH-4	479232	8665370	Av. Leoncio Prado 175	1,40	3,00	ML - CL	Limo Arcilloso
	MCH-5	477278	8663465	Estadio de Coto	0,93	3,50	CL	Arcilla Inorgánica
	MCH-6	478288	8663212	Prolong. Arequipa 1604	1,33	1,50	ML	Limos
	MCH-7	479008	8663603	Av. Jacinto Ibarra y Jirón La Unión	1,27	3,50	SM	Arena Limosa

4.3 Factores y Restricciones de Irregularidad

La irregularidad en una estructura es un punto importante a evaluar, por ello que la Norma E.030 nos proporciona las Tablas N°8 y N°9 con las irregularidades estructurales en altura y planta respectivamente que se deben evaluar.

La mayoría de estas irregularidades analizadas en las viviendas de la muestra fueron visualmente con el uso de los planos; por ejemplo, de la irregularidad

geométrica vertical, discontinuidad de los sistemas resistentes, esquinas entrantes, discontinuidad del diafragma y sistemas no paralelos. Adicionalmente a ello, la irregularidad de piso débil con elementos estructurales continuos en todos los pisos; la resistencia de un elemento está en función a las secciones que posee y al valor que posee como resistencia a la compresión (f´c).

Las irregularidades restantes resultaron del análisis estructural estático, ya que nos proporciona las rigideces de cada piso para evaluar la irregularidad de piso blando, los pesos sísmicos para la irregularidad de masa o peso y los desplazamientos relativos máximos y promedios para la irregularidad torsional.

El resultado de regularidad de las viviendas evaluadas es la siguiente (Ver Tabla 30 y Figura 50):

 REGULARIDAD ESTRUCTURAL

 REGULARIDAD ESTRUCTURAL
 N° DE VIVIENDAS INFORMALES
 %

 Regular
 11
 73%

 Irregular
 4
 27%

 TOTAL
 15
 100%

Tabla 30: Regularidad Estructural de las Viviendas Informales.

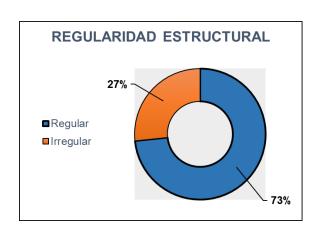


Figura 50: Regularidad Estructural de las Viviendas Informales.

Por otra parte, el Artículo 21 de la Norma E.030 nos menciona que a las Edificaciones Comunes ubicadas en la Zona 3 no se les permiten irregularidades

extremas; todas las viviendas cumplieron con este requisito, ya que la única irregularidad encontrada fue de esquinas entrantes en 4 de las 15 viviendas validadas estructuralmente, esto es debido a que la relación entre las esquinas es mayor al 20% de la longitud total de la edificación en ambas direcciones de análisis (Ver Tabla 31 y Figura 51).

Estas viviendas, al poseer tal irregularidad de esquinas entrantes, presentan una desventaja en comparación a las viviendas regulares, debido a que tienden a sufrir graves daños estructurales como fisuras o grietas en las uniones porque se genera movimiento en las partes de la estructura de manera independiente como efecto del movimiento del suelo producto de un sismo. Así mismo, esta irregularidad produce un efecto de torsión porque los centros de masa y rigidez no coinciden.

Tabla 31: Viviendas Informales con Irregularidad de Esquinas Entrantes.

VIVIENDAS INFORMALES CON IRREGULARIDAD DE ESQUINAS ENTRANTES							
DISTRITO N° DE VIVIENDAS INFORMALES %							
Huancayo (HU-1 y 3) 2 50%							
El Tambo (ET-1 y 3)	2	50%					
Chilca 0 0%							
<u>TOTAL</u>	<u>4</u>	<u>100%</u>					

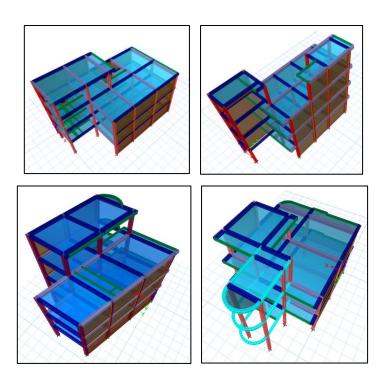


Figura 51: Planos en Planta de la vivienda en la HU-1 (Parte Superior Izquierda), la vivienda (Parte Superior Derecha), (Parte Inferior Izquierda) y (Parte Inferior Derecha).

4.4 Cargas para el Análisis Estructural

Adicionalmente a las Cargas Vivas Mínimas Repartidas que nos indica la Norma E.020 "Cargas" de 200kgf/m² para viviendas, tanto para ambientes como escaleras y corredores; las Cargas Muertas consideradas en el análisis de cada vivienda fueron el peso de acabados, el peso de tabiquería, el peso de ladrillo de techo, el peso de parapeto, el peso de la escalera y el peso del tanque elevado.

4.4.1 Carga Muerta de los Acabados

Asumiendo un piso terminado de 5cm y un concreto simple de 2300kgf/m³.

$$Peso\ acabados = 0.05x2300 = 115\frac{kg}{m^2} \approx 120\ \frac{kg}{m^2}$$

4.4.2 Carga Muerta de la Tabiquería

Se tiene también en la CM la tabiquería interna que fue calculada haciendo uso de la Norma E.020 "Cargas" del año 1985 de la siguiente manera:

Asumiendo un muro de 0.15m de espesor, construido con ladrillos pandereta (peso específico=1350kgf/m³) con una altura de 2.40m.

Peso tabiquería =
$$0.15x2.40x1350 = 486 \frac{kgf}{m^2}$$
 (48,6MPa)

El valor calculado se contrasta con el rango de la siguiente tabla (Ver Tabla 32):

Tabla 32: Cargas Mínimas Repartidas Equivalentes a la Tabiquería.

Tabla 2.3 CARGAS MÍNIMAS REPARTIDAS EQUIVALENTES A LA TABIQUERÍA						
Peso del Tabique (Kgf/m)	Carga Equivalente (Kgf/m²) a ser añadida a la carga muerta					
74 o menos	30					
75 a 149	60					
150 a 249	90					
250 a 399	150					
400 a 549	210					
550 a 699	270					
700 a 849	330					
850 a1000	390					

Fuente: Norma Técnica E.020 "Cargas" – 1985.

Se tendría un valor de carga equivalente de la tabiquería de 210kgf/m² (21MPa), pero por criterio propio este valor es demasiado alto; por ello, se asumirá un valor anterior que es de 150kgf/m² (15MPa). (29)

4.4.3 Carga Muerta del Ladrillo de Techo

Otro punto a considerar es el peso de los ladrillos de la losa aligerada unidireccional, ya que el modelado en el software se hace como elemento tipo Ribbed (nervado), lo que significa solo las viguetas y la losa superior de 5cm de concreto armado; donde Vc es el volumen del concreto armado de la losa aligerada y está en función de su espesor y el número de ladrillos por m² que es 25/3.

$$\begin{split} Vc &= \left(1 \cdot 1 \cdot e_{alig}\right) - \left(\#lad_{m2} \cdot \left(e_{alig} - 0.05\right) \cdot 0.3 \cdot 0.30\right) [m^3/m^2] \\ & \text{o} \quad Vc &= 0.05 + 0.25 \left(e_{alig} - 0.05\right) [m^3/m^2] \end{split}$$

Ya obtenido el valor del volumen de concreto se multiplica por su peso específico (Yc) de 2400kgf/m³ y se obtiene el peso por metro cuadrado de la losa aligerada (Wc).

$$Wc = Vc \cdot \forall c [kg/m^2]$$

Por último, haciendo uso de la Tabla ubicada en el Anexo 1 Pesos Unitarios de la Norma E.020 Cargas (Ver Tabla 33), se tiene que disminuir al peso propio para cada espesor de aligerado el peso del concreto calculado y el resultado sería el peso de CM de los ladrillos.

Tabla 33: Pesos Unitarios - Losas Aligeradas Armadas en una Sola Dirección de Concreto Armado.

ANEXO 1 PESOS UNITARIOS LOSAS ALIGERADAS ARMADAS EN UNA SOLA DIRECCIÓN DE CONCRETO ARMADO							
Con vigueta 0.10m	Con vigueta 0.10m de ancho y 0.40m entre ejes						
Espesor del aligerado (m)							
0.17 0.05 2.8 (280)							
0.20 0.05 3.0 (300)							
0.25	0.05	3.5 (350)					
0.30	0.05	4.2 (420)					

Fuente: Norma Técnica E.020 "Cargas" - 2006.

$$CM_{lad} = PesoPropio - Wc [kg/m^2]$$

Con el uso de las fórmulas previas podemos obtener la siguiente tabla de la CM de los ladrillos de techo (Ver Tabla 34):

Tabla 34: Carga Muerta Calculada debido al Peso de los Ladrillos de Techo de la Losa Aligerada Unidireccional.

CM DE LADRILLOS DE TECHO		
Espesor del aligerado (m)	CM ladrillos de techo (kgf/m²)	
0.17	88	
0.20	90	
0.25	110	
0.30	150	

4.4.4 Carga Muerta del Parapeto de la Azotea

Se tienen también que adicionar como CM el peso de los parapetos ubicados en las azoteas como una carga lineal (kgf/m) sobre las vigas que los soportan; esta carga resulta de la multiplicación de la altura (h) del parapeto por el espesor del aparejo (e), que puede ser en soga o cabeza y por el peso específico según sea el tipo de ladrillo (γ_{ladrillo}); este último valor se obtendrá del Anexo 1 "Pesos Unitarios" de la Norma E.020 (Ver Tabla 35)

$$CM_{parapeto} = h \cdot e \cdot \gamma_{ladrillo}$$

Tabla 35: Pesos Unitarios - Material de Albañilería.

ANEXO 1 PESOS UNITARIOS		
MATERIALES	PESO kN/m³ (kgf/m³)	TIPO DE LADRILLO
Albañilería de:		
Adobe	16.0 (1600)	
Unidades de arcilla cocida sólidas	18.0 (1800)	King Kong
Unidades de arcilla cocida huecas	13.5 (1350)	Pandereta

Fuente: Norma Técnica E.020 "Cargas" – 2006.

4.4.5 Cargas de la Escalera

En el caso de las escaleras, estas, al ser modeladas, darían una pequeña rigidez a la estructura, pero la cual sería falsa ya que una escalera no es diseñada para la acción sísmica; además al no considerarlo se tiene un caso más conservador y saber cómo realmente se comportan las columnas y muros portantes frente a la cortante basal producida por el sismo.

Pero el peso que estas tienen sí es considerable, por lo cual se distribuye este peso sobre las vigas que lo sostienen mediante un metrado de cargas verticales (Ver Figura 52); todo ello fue bajo la guía del caso práctico ubicado en el capítulo 1.8 Escaleras del libro Análisis de Edificios del Ing. Ángel San Bartolomé Ramos del año 1998. (30)

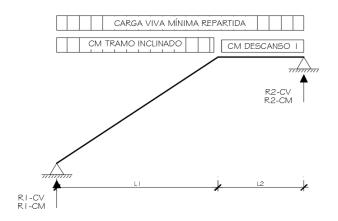


Figura 52: Idealización Estructural de la Escalera.

Se ha metrado tanto para el descanso como para el tramo inclinado la carga viva mínima de 200kgf/m^2 que indica la Norma E.020 y cargas muertas como son el peso propio con un peso específico de 2400kgf/m^3 del concreto armado y el peso de los acabados (100kgf/m^2). Para el peso propio del tramo inclinado, se utilizó la siguiente fórmula que considera las dimensiones del paso (p), contra paso (cp), espesor de garganta (t) y el peso específico del concreto armado (γ):

w(pp) =
$$\sqrt[3]{\left[\frac{cp}{2} + t x \sqrt{1 + \left(\frac{cp}{p}\right)^2}\right] \left[\frac{kg}{m^2}\right]}$$

Mediante un análisis estructural con sumatoria de fuerzas y momentos en un punto se pudieron obtener las reacciones con cargas por unidad de longitud (kgf/m) asignadas en las vigas donde descansan y están en cada nivel (Ver Figura 53); cabe mencionar que se consideró la longitud proyectada del tramo inclinado.

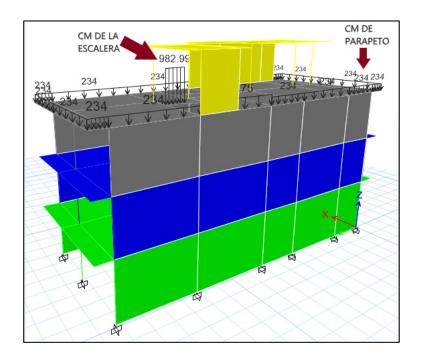


Figura 53: Asignación de la Carga Muerta debida al Peso de la Escalera y del Parapeto en la Azotea.

4.4.6 Cargas del Tanque Elevado

En el caso del tanque elevado que se ubica en la parte superior del techo que cubre la escalera, éste posee tanto carga viva por el peso del agua como carga muerta por el peso propio del material que posee el tanque pre fabricado. Estos valores de carga viva fueron calculados considerando lo siguiente:

$$\forall agua = 1 \left[\frac{kg}{m^2} \right] por lo tanto 1kg = 1Lt$$

Teniendo la capacidad de cada tipo de tanque elevado como fueron de 750, 1100 y 2500L se obtuvo su peso equivalente, el cual al ser dividido sobre el área de losa que lo soportará se obtuvo una carga distribuida kgf/m², la cual fue asignada en el modelado (Ver Figura 54).

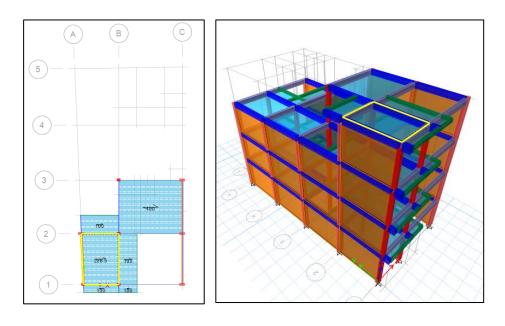


Figura 54: Vista en Planta (Izquierda) y Vista 3D (Derecha) del Área donde será Asignada las Cargas debido al Tanque Elevado en la Vivienda Informal HU-4.

También se añadió la carga muerta que posee este tanque prefabricado basándonos en la ficha técnica que nos presenta la marca Rotoplas (Ver Figura 55) y distribuyéndola de la misma manera sobre el área de losa que la soportará.

Figura 55: Ficha Técnica del Tanque Rotoplas para Agua. Fuente: Rotoplas.

4.5 Separación de Edificios

Respecto a la separación mínima que debe tener una estructura con otra, ninguna de las viviendas lo cumple; según criterios no profesionales es pérdida de área de terreno y construyen a ras de la vivienda contigua. Este punto es importante de considerar en toda estructura, ya que ante un posible evento sísmico se tendrán desplazamientos y producirá el efecto mayormente conocido como "golpeteo", impactando una vivienda contra otra y generando graves daños a los elementos estructurales (Ver Figura 56). Es preferible dejar un poco de espacio a tener que afrontar las consecuencias a futuro.

Figura 56: Inexistente Separación entre Viviendas.

CAPÍTULO V RESULTADOS Y DISCUSIÓN

5.1 Resultados del Tratamiento y Análisis de la Información

5.1.1 Resultados del Tratamiento

Al haberse realizado un análisis estructural estático, se obtuvieron desplazamientos mayores a los del análisis dinámico, esto debido a la distribución en función a la altura que equivale al primer modo de vibración en cada una de las viviendas. Los desplazamientos fueron mucho mayores para la dirección transversal, ya que las columnas no aportan mucha rigidez y en las siguientes Tablas y Figuras se podrá observar los máximos desplazamientos laterales calculados para cada vivienda crítica según el número de pisos. (Ver Anexos 1, 2, 3, 4 y 7)

5.1.1.1 Desplazamientos Laterales - Vivienda de 2 Pisos

La vivienda de 2 pisos seleccionada fue la más crítica; ubicada en el distrito de Huancayo (HU-5), cuenta con columnas de 25x25cm, vigas principales de 25x30cm, vigas chatas de 25x20cm y dobles viguetas para los volados de 10x20cm. Además de una losa aligerada unidireccional de 20cm de espesor, ubicada en la dirección transversal que transfiere las cargas de gravedad hacia los muros portantes de 13cm de espesor efectivo con una resistencia a la compresión de 35kgf/cm² (3,5MPa).

Todos los elementos de concreto armado tienen una resistencia a la compresión de 175kgf/cm² (17,5MPa). La altura total de la vivienda es de 8,10m y posee en la azotea un parapeto de 1m de altura por 13cm de espesor; se tiene un tanque elevado con capacidad de 1100L y una escalera a dos tramos con un solo descanso intermedio. Es una estructura regular (Ver Figura 57).

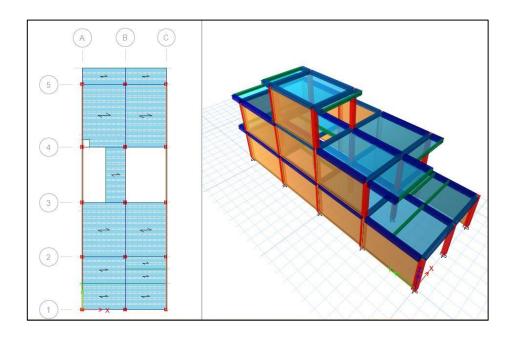


Figura 57: Vivienda Informal de 2 Pisos (HU-5), Vista en Planta (Izquierda) y Vista 3D (Derecha)

El máximo desplazamiento lateral en el último piso es mayor en el eje transversal y para el análisis estático con un valor de 3,455cm (Ver Tabla 36 y Figura 58).

Tabla 36: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Dos Pisos + Azotea (HU-5).

DESPLAZAMIENTOS LATERALES MÁXIMOS EN EL ÚLTIMO PISO - VIVIENDA DE DOS PISOS + AZOTEA (HU-5)		
ANÁLISIS ESTRUCTURAL	DESPLAZAMIENTO LATERAL TRANSVERSAL	DESPLAZAMIENTO LATERAL LONGITUDINAL
ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES	3,455cm	0,629cm
ANÁLISIS DINÁMICO MODAL ESPECTRAL	2,409cm	0,315cm

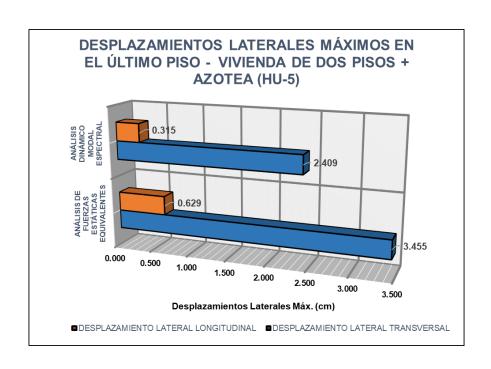


Figura 58: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Dos Pisos + Azotea (HU-5)

5.1.1.2 Desplazamientos Laterales - Vivienda de 3 Pisos

Este tipo de vivienda con 3 pisos es el que tiene un 60% de la muestra ubicada en todos los distritos, pero debido a que la mayoría de ellos se ubican en Huancayo y además de tener una irregularidad en planta debido a esquinas entrantes, se eligió la vivienda de código HU-3, posee columnas muy pequeñas de 25x25cm, vigas peraltadas de 25x40cm, vigas chatas de 25x20cm y dobles viguetas para los volados de 15x20cm, una losa aligerada unidireccional de 20cm de espesor ubicada en la dirección longitudinal que transfiere las cargas de gravedad hacia las vigas chatas y no hacia los muros portantes de 13cm de espesor efectivo con una resistencia a la compresión de 35kgf/cm² (3,5MPa). Todos los elementos de concreto armado tienen una resistencia a la compresión de 175kgf/cm² (17,5MPa).

La altura total de la vivienda es de 10,95m y posee en la azotea un parapeto de 90cm de altura por 13cm de espesor; se tiene un tanque elevado con capacidad de 1100L y una escalera a dos tramos con un

solo descanso intermedio y vigas chatas como doble viguetas en las losas aligeradas del techo que cubre la escalera (Ver Figura 59).

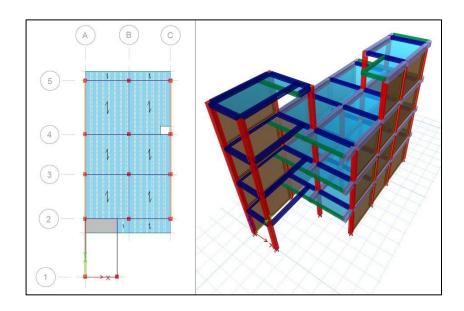


Figura 59: Vivienda Informal de 3 Pisos (HU-3), Vista en Planta (Izquierda) y Vista 3D (Derecha)

El máximo desplazamiento lateral en el último piso es mayor en el eje transversal y para el análisis estático con un valor de 5,756cm (Ver Tabla 37 y Figura 60).

Tabla 37: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Tres Pisos + Azotea (HU-3)

DESPLAZAMIENTOS LATERALES MÁXIMOS EN EL ÚLTIMO PISO - VIVIENDA DE TRES PISOS + AZOTEA (HU-3)		
ANÁLISIS ESTRUCTURAL	DESPLAZAMIENTO LATERAL TRANSVERSAL	DESPLAZAMIENTO LATERAL LONGITUDINAL
ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES	5,756cm	0,912cm
ANÁLISIS DINÁMICO MODAL ESPECTRAL	3,915cm	0,621cm

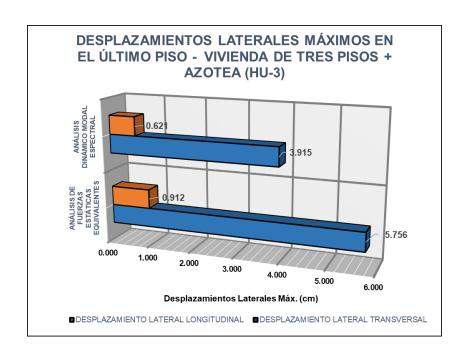


Figura 60: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Tres Pisos + Azotea (HU-3).

5.1.1.3 Desplazamientos Laterales - Vivienda de 4 Pisos

La vivienda de 4 pisos es la única de la muestra ubicada en el distrito de El Tambo (ET-5); cuenta con elementos de concreto armado que tienen una resistencia a la compresión de 175kgf/cm² (17,5MPa), entre ellos tenemos tres tipos de columnas: una de 25x40cm, otra de 25x45cm y una sola ubicada en el segundo nivel de 15x25cm; vigas principales de 25x40cm a los extremos y al centro de 25x45cm, vigas chatas de 25x20cm y dobles viguetas para los volados de 15x20cm.

Además de una losa aligerada unidireccional de 20cm de espesor ubicada en la dirección transversal que transfiere las cargas de gravedad hacia los muros portantes de 13cm de espesor efectivo con una resistencia a la compresión de 35kgf/cm² (3,5MPa). La altura total de la vivienda es de 14,25m y posee en la azotea un parapeto de 1m de altura por 13cm de espesor; se tiene un tanque elevado con capacidad de 2500L y una escalera a dos tramos con un solo descanso intermedio. Es una estructura regular (Ver Figura 61).

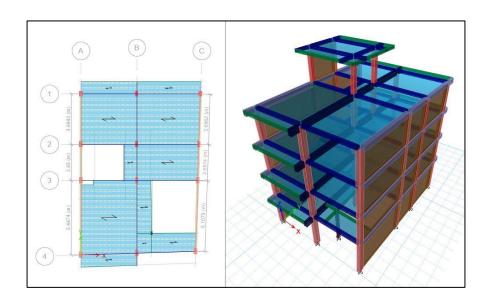


Figura 61: Vivienda Informal de 4 Pisos (ET-5), Vista en Planta (Izquierda) y Vista 3D (Derecha)

El máximo desplazamiento lateral en el último piso es mayor en el eje transversal y para el análisis estático con un valor de 6,021cm (Ver Tabla 38 y Figura 62).

Tabla 38: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cuatro Pisos + Azotea (ET-5).

DESPLAZAMIENTOS LATERALES MÁXIMOS EN EL ÚLTIMO PISO - VIVIENDA DE CUATRO PISOS + AZOTEA (ET-5)		
ANÁLISIS ESTRUCTURAL	DESPLAZAMIENTO LATERAL TRANSVERSAL	DESPLAZAMIENTO LATERAL LONGITUDINAL
ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES	6,021cm	1,204cm
ANÁLISIS DINÁMICO MODAL ESPECTRAL	4,088cm	1,467cm

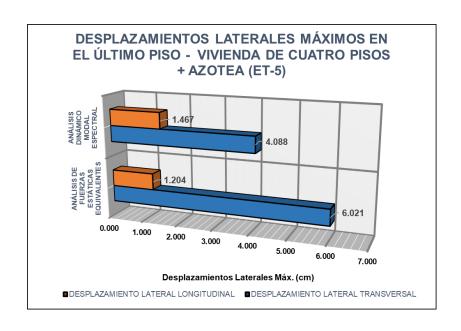


Figura 62: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cuatro Pisos + Azotea (ET-5).

5.1.1.4 Desplazamientos Laterales - Vivienda de 5 Pisos

Se tuvieron 2 viviendas de 5 pisos, ambas ubicadas en el distrito de Chilca, de las cuales se eligió la vivienda de código CH- 4, esta vivienda posee columnas de 25x45cm ubicadas en la parte central y columnas de sección irregular de las mismas medidas, vigas principales de 25x40cm, vigas chatas de 25x20cm, dobles viguetas para los volados de 15x20cm y vigas de 25x35cm ubicadas en el techo que cubre la escalera diseñada como una losa maciza bidireccional de 15cm; por otro lado, se tiene una losa aligerada unidireccional de 20cm de espesor ubicada en la dirección transversal que transfiere las cargas de gravedad hacia los muros portantes de 13cm de espesor efectivo con una resistencia a la compresión de 35 kgf/cm² (3,5MPa).

Todos los elementos de concreto armado tienen una resistencia a la compresión de 175kgf/cm² (17,5MPa). La altura total de la vivienda es de 17,50m y posee en la azotea un parapeto de 1m de altura por 13cm de espesor; se tiene un tanque elevado con capacidad de 2500L y una escalera a dos tramos con un solo descanso intermedio. Es una estructura regular (Ver Figura 63).

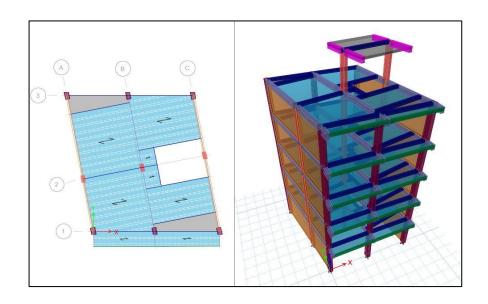


Figura 63: Vista 3D de la Vivienda Informal de 5 Pisos (CH-4).

El máximo desplazamiento lateral en el último piso es mayor en el eje transversal y para el análisis estático con un valor de 8,263cm (Ver Tabla 39 y Figura 64).

Tabla 39: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cinco Pisos + Azotea (CH-4).

DESPLAZAMIENTOS LATERALES MÁXIMOS EN EL ÚLTIMO PISO - VIVIENDA DE CINCO PISOS + AZOTEA (CH-4)		
ANÁLISIS ESTRUCTURAL	DESPLAZAMIENTO LATERAL TRANSVERSAL	DESPLAZAMIENTO LATERAL LONGITUDINAL
ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES	8,263cm	4,242cm
ANÁLISIS DINÁMICO MODAL ESPECTRAL	5,372cm	2,328cm

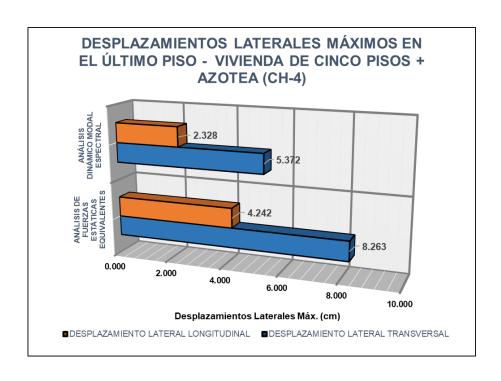


Figura 64: Desplazamientos Laterales Máximos en el Último Piso – Vivienda de Cinco Pisos + Azotea (CH-4).

5.1.2 Análisis de la Información

Del mismo modo que en los desplazamientos máximos, las distorsiones de entrepiso serán visualizadas para las viviendas desde dos pisos hasta cinco pisos; en este punto este parámetro es el que valida estructuralmente a la estructura definiendo si es rígida o no frente a un futuro sismo. Los desplazamientos laterales relativos divididos sobre la altura de cada entrepiso deben ser menores a los permitidos en el Artículo 32 de la Norma E.030 los cuales son para estructuras con material predominante de concreto armado el valor de 0,007 y para la albañilería un 0,005. A continuación, se puede apreciar los resultados obtenidos para cada una de las direcciones de análisis.

5.1.2.1 Distorsiones de Entrepiso – Vivienda de 2 Pisos

Las distorsiones en la vivienda de 2 pisos en la dirección transversal que posee un sistema estructural de pórticos sobrepasan la distorsión máxima permisible tanto en el análisis de fuerzas estáticas equivalentes como en el análisis dinámico modal espectral; en cambio, para la dirección longitudinal resulta por muy debajo de la deriva

permisible, esto es debido a la gran rigidez que aportan los muros portantes en dicho sentido de análisis (Ver Tabla 40 y Figura 65).

Tabla 40: Distorsiones Máximas de Entrepiso - Vivienda de Dos Pisos + Azotea (HU-5).

DISTO	DISTORSIONES MÁXIMAS DE ENTREPISO - VIVIENDA DE 2 PISOS + AZOTEA (HU-5)							
ENTREPISO	ANÁLISIS DE FUERZAS O ESTÁTICAS O EQUIVALENTES O MODAL ESPECTRAL PREDOM. (E.030)							
ENTRE	Distorsión Distorsión Distorsión Distorsión Inelástica Inelástica Transversal Longitudinal Transversal Longitudinal		Distorsión Máxima Albañilería	Distorsión Máxima Concreto Armado				
3	0,023526	0,004428	0,016680	0,001880				
2	0,033185	0,000403	0,023119	0,000324	0,005	0,007		
1	0,020059	0,000408	0,013734	0,000420				

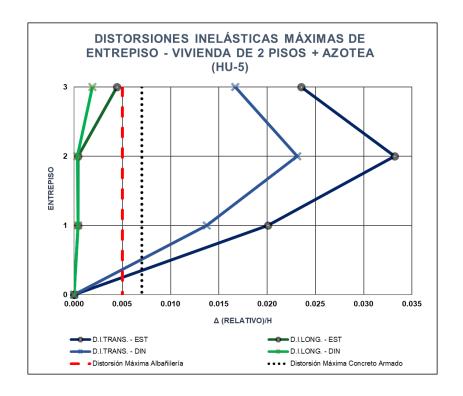


Figura 65: Distorsiones Máximas de Entrepiso - Vivienda de Dos Pisos + Azotea (HU-5).

5.1.2.2 Distorsiones de Entrepiso - Vivienda de 3 Pisos

De la forma que para la vivienda anterior ahora la vivienda de 3 pisos no cumple con la distorsión máxima permisible en la dirección transversal en ambos análisis; en cambio donde se tienen muros portantes a lo largo de la dirección longitudinal si se cumple este parámetro (Ver Tabla 41 y Figura 66).

Tabla 41: Distorsiones Máximas de Entrepiso - Vivienda de Tres Pisos + Azotea (HU-3).

DISTO	DISTORSIONES MÁXIMAS DE ENTREPISO - VIVIENDA DE 3 PISOS + AZOTEA (HU-3)							
EPISO	ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES ANÁLISIS DINÁMICO MODAL ESPECTRAL				LÍMITE DISTORS SEGÚN EL PREDOM	IÓN MÁX. MATERIAL		
ENTREPISO	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Máxima Albañilería	Distorsión Máxima Concreto Armado		
4	0,031716	0,004279	0,021723	0,003143				
3	0,034386	0,001001	0,023034	0,000508	0.005	0.007		
2	0,038807	0,001226	0,026298	0,000764	0,003	0,007		
1	0,024215	0,001179	0,016754	0,000820				

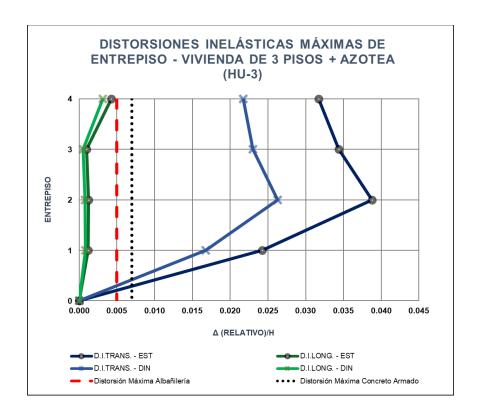


Figura 66: Distorsiones Máximas de Entrepiso - Vivienda de Tres Pisos + Azotea (HU-3).

5.1.2.3 Distorsiones de Entrepiso - Vivienda de 4 Pisos

En la vivienda de 4 pisos tampoco se cumple con la distorsión máxima permisible en la dirección transversal en ambos análisis; en cambio donde se tienen muros portantes a lo largo de la dirección longitudinal si se cumple este parámetro, excepto el último nivel que pertenece al techo que cubre la escalera por tener solo columnas pequeñas que lo sostienen no se tiene tanta rigidez en comparación a la fuerza cortante que llega a este entrepiso (Ver Tabla 42 y Figura 67).

Tabla 42: Distorsiones Máximas de Entrepiso - Vivienda de Cuatro Pisos + Azotea (ET-5).

DISTO	DISTORSIONES MÁXIMAS DE ENTREPISO - VIVIENDA DE 4 PISOS + AZOTEA (ET-5)							
EPISO	ANÁLISIS DE FUERZAS O ESTÁTICAS EQUIVALENTES ANÁLISIS DINÁMICO MODAL ESPECTRAL					ES DE IÓN MÁX. MATERIAL 1. (E.030)		
ENTREPISO	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Máxima Albañilería	Distorsión Máxima Concreto Armado		
5	0,014459	0,004599	0,009102	0,008159				
4	0,022827	0,000877	0,014706	0,000655				
3	0,031459	0,001230	0,020861	0,000876	0,005	0,007		
2	0,035091	0,001444	0,024416	0,001011				
1	0,023710	0,001378	0,017261	0,000987				

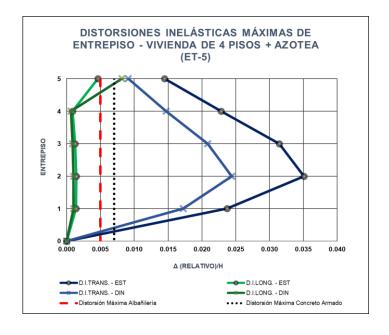


Figura 67: Distorsiones Máximas de Entrepiso - Vivienda de Cuatro Pisos + Azotea (ET-5).

5.1.2.4 Distorsiones de Entrepiso – Vivienda de 4 Pisos

Por último, la vivienda de 5 pisos presentada sobrepasa la distorsión máxima permisible en la dirección transversal en ambos análisis a diferencia de la dirección longitudinal donde los muros portantes aportan gran rigidez; cabe mencionar que para el análisis estático estos muros portantes no cumplen este límite ya sea por sobrepasar la altura permitida para realizar este análisis en cambio para un análisis dinámico modal espectral sí. De la misma forma que la vivienda de 4 pisos solo se cuenta con columnas que soportan las cargas de la losa que cubre el techo de la escalera, lo cual no da tanta rigidez comparado a la cortante que a este entrepiso llega (Ver Tabla 43 y Figura 68).

Tabla 43: Distorsiones Máximas de Entrepiso - Vivienda de Cinco Pisos + Azotea (CH-4).

DISTO	DISTORSIONES MÁXIMAS DE ENTREPISO - VIVIENDA DE 5 PISOS + AZOTEA (CH-4)							
ENTREPISO	ANÁLISIS DE FUERZAS ESTÁTICAS EQUIVALENTES ANÁLISIS DINÁMICO MODAL ESPECTRAL EQUIVALENTES LÍMITES DE DISTORSIÓN MÁX. SEGÚN EL MATERIAL PREDOM. (E.030)							
ENTR	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Inelástica Transversal	Distorsión Inelástica Longitudinal	Distorsión Máxima Albañilería	Distorsión Máxima Concreto Armado		
6	0,024909	0,009363	0,015866	0,009617				
5	0,022060	0,003568	0,013210	0,001381				
4	0,029972	0,004716	0,018186	0,001748	0.005	0.007		
3	0,035214	0,005516	0,022429	0,001963	0,003	0,007		
2	0,036279	0,005776	0,024684	0,002045				
1	0,023352	0,004261	0,016843	0,001704				

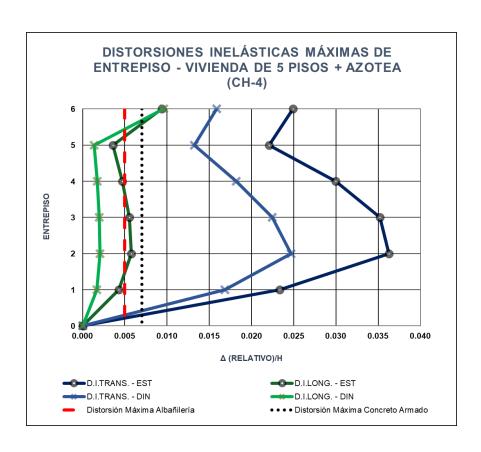


Figura 68: Distorsiones Máximas de Entrepiso - Vivienda de Cinco Pisos + Azotea (CH-4).

5.1.2.5 Análisis de Muros Portantes

Se tiene en la dirección longitudinal el sistema estructural de Albañilería confinada por lo que para cada una de las viviendas se realizó el análisis de requisitos estructurales mínimos: espesor efectivo y verificación del esfuerzo axial máximo en cada muro portante, se validó la estructuración en planta presentada identificando los muros a reforzar, así como validar si la densidad mínima de estos es la correcta; además de corroborar el control de fisuración de cada muro en cada nivel de igual forma verificar la resistencia al corte de la estructura. Considerando la acción de la fuerza cortante calculada en el análisis estático por ser este valor más conservador los resultados fueron los siguientes para cada caso según el número de pisos (Ver Tablas 44, 45, 46 y 47).

ANÁLISIS DE MUROS PORTANTES - VIVIENDA DE DOS PISOS + AZOTEA (HU-5)							
* Muro Portante (numeral 19	* Muro Portante (numeral 19.1)						
a) Fanagau Ffactive "t"	Calculado	Planos	t correcto, evita tanto el desplome del				
a) Espesor Efectivo "t"	0,13m	0,13m	muro en el proceso constructivo como la congestión de refuerzos.				
b) Esfuerzo Axial Máximo	Se previenen fallas por pandeo y se limita la reducción de ductilidad en cada muro portante.						
* Estructuración en Planta (numeral 19.2)							
a) Muros a Reforzar	Todos los muros absorben más de un 10% de la cortante de entrepiso por lo tanto serán reforzados; excepto MP 2-1° nivel y MP 4-3° nivel.						
b) Densidad Mínima de Muros Reforzados	Correcta densidad de muros reforzados.						
* Control de Fisuración (num	eral 26.2)						
La mayoría de muros cumplen con no fisurarse ante un sismo moderado en cada entrepiso; excepto de los MP5, MP6 Y MP7 del 1° nivel y el MP6-3° nivel.							
* Verificación de la resistencia al corte del edificio (numeral 26.4)							
¿∑V _{mi} ≥ V _{Ei} ?	Todos los muros tienen una mayor resistencia al corte que la fuerza cortante producida por un sismo severo, limitando el nivel de daños.						

Tabla 45: Análisis de Muros Portantes - Vivienda de Tres Pisos + Azotea (HU-3).

ANÁLISIS DE MUROS PORTANTES - VIVIENDA DE TRES PISOS + AZOTEA (HU-3)					
* Muro Portante (numeral 19	.1)				
-)	Calculado	Planos	t correcto, evita tanto el desplome del		
a) Espesor Efectivo "t"	0,13m	0,13m	muro en el proceso constructivo como la congestión de refuerzos.		
b) Esfuerzo Axial Máximo	b) Esfuerzo Axial Máximo Se previenen fallas por pandeo y se limita la reducción de ductilidad en cada muro portante.				
* Estructuración en Planta (numeral 19.2)					
a) Muros a Reforzar	Todos los muros absorben más de un 10% de la cortante de entrepiso por lo tanto serán reforzados.				
b) Densidad Mínima de Muros Reforzados	Correcta densidad de muros reforzados.				
* Control de Fisuración (num	eral 26.2)				
¿Ve ≤ 0.55 Vm? Todos los muros cumplen con no fisurarse ante un sismo moderado en cada nivel.					
* Verificación de la resistencia al corte del edificio (numeral 26.4)					
¿∑V _{mi} ≥ V _{Ei} ?	Todos los muros tienen una mayor resistencia al corte que la fuerza cortante producida por un sismo severo, limitando el nivel de daños.				

ANÁLISIS DE MUROS PORTANTES - VIVIENDA DE CUATRO PISOS + AZOTEA (ET-5)						
* Muro Portante (numeral 19	.1)					
a) Espesor Efectivo "t"	Calculado	Planos	Espesor efectivo erróneo.			
a) Espesor Electivo (0,23m	0,13m	Espesor electivo erroneo.			
b) Esfuerzo Axial Máximo	Se previenen fallas por pandeo y se limita la reducción de ductilidad en cada muro portante.					
* Estructuración en Planta (numeral 19.2)						
a) Muros a Reforzar	Todos los muros absorben más de un 10% de la cortante de entrepiso por lo tanto serán reforzados; excepto MP2-1° nivel, MP2-2°, 3° y 4° nivel.					
b) Densidad Mínima de Muros Reforzados	Se debería cambiar el espesor de algunos muros o agregar placas de Concreto Armado.					
* Control de Fisuración (num	eral 26.2)					
La mayoría de muros cumplen con no fisurarse ante un sismo moderado en cada entrepiso; excepto del MP1 al MP6-1°nivel, MP2,4,5-2°nivel y el MP4-3°nivel.						
* Verificación de la resistenc	* Verificación de la resistencia al corte del edificio (numeral 26.4)					
?V _{mi} ≥ V _{Ei} ?	Inadecuada resistencia y rigidez el 1°, 2°, 3° nivel y azotea.					

Tabla 47: Análisis de Muros Portantes - Vivienda de Cinco Pisos + Azotea (CH-4).

ANÁLISIS DE MUROS PORTANTES - VIVIENDA DE CINCO PISOS + AZOTEA (CH-4)						
* Muro Portante (numeral 19.1)						
a) Espesor Efectivo "t"	Calculado 0,23m	Planos 0,13m	Espesor efectivo erróneo.			
b) Esfuerzo Axial Máximo	Los muros portantes del 4° y 5° nivel no cumplen con este requisito, se sugiere mejorar la calidad de la albañilería (f'm) o aumentar el espesor efectivo.					
* Estructuración en Planta (numeral 19.2)						
a) Muros a Reforzar	Todos los muros absorben más de un 10% de la cortante de entrepiso por lo tanto serán reforzados.					
b) Densidad Mínima de Muros Reforzados	Se debería o placas de Co		espesor de algunos muros o agregar rmado.			
* Control de Fisuración (num	eral 26.2)					
Solo los muros del 4° y 5° nivel cumplen con no fisurarse ante un sismo moderado en cada entrepiso, como también el MP2-2° nivel, MP1 y MP2 del 3° nivel.						
* Verificación de la resistenc	* Verificación de la resistencia al corte del edificio (numeral 26.4)					
?V _{mi} ≥ V _{Ei} ?	Inadecuada resistencia en todos los niveles, excepto del 5°.					

5.2 Discusión de Resultados

En la tesis: "VULNERABILIDAD SÍSMICA DE CENTROS EDUCATIVOS DE HUANCAYO METROPOLITANO", se analizaron cuatro módulos críticos mediante el análisis dinámico modal espectral, se obtuvo que en el eje X compuesta por pórticos supera la deriva límite de 0,007 y al contrario en el eje Y de muros de albañilería no superan la deriva límite; el resultado obtenido en esta tesis concuerda con los resultados descritos los muros portantes son los causantes de estar por menos de la deriva máxima comprobándose una vez más su gran aporte de rigidez a la estructura.

Del mismo modo en la tesis "EVALUACIÓN DEL COMPORTAMIENTO ESTRUCTURAL DE UNA VIVIENDA AUTOCONSTRUIDA EL AÑO 2012, SECTOR CAMINO REAL II, CALLE TRES MARÍAS – PROVINCIA DE JAÉN" se evaluó una vivienda informal de 4 pisos y se obtuvieron derivas de 0,008 y 0,001 en las direcciones X-X y Y-Y respectivamente, comparando estos resultados con la vivienda crítica de 4 pisos analizada en la presente tesis se tuvo una deriva de 0,024416 en la dirección X-X y 0,001011 en la dirección Y-Y.

Como se pudo observar en las dos comparaciones previas tanto para instituciones educativas de Huancayo Metropolitano y la vivienda de 4 pisos en Jaén, se observa una mayor rigidez en la dirección que posee muros portantes lo cual causaría desestabilidad de la estructura. En la tesis: "ANÁLISIS COMPARATIVO DE RESPUESTA SÍSMICA DE VIVIENDA DE DOS PISOS DE PÓRTICOS RESISTENTES A MOMENTOS VERSUS DE MURO PORTANTE" analizó la misma vivienda, pero con dos sistemas estructurales distintos una con el sistema estructural de pórticos se obtuvieron desplazamientos laterales tanto para el eje X como para el Y mayores a los obtenidos del análisis de la vivienda con un sistema estructural de muros portantes, éstas semejantes resultados a las viviendas analizadas en la tesis.

Las 15 viviendas de Huancayo Metropolitano fueron validadas estructuralmente no cumpliendo con la deriva máxima permisible en la dirección transversal (X-X) que la Norma indica al igual que en las tesis que se tuvieron como antecedentes, debido a poseer columnas pequeñas y con falta de peralte para poder tener una longitud de anclaje del acero de las vigas, este punto determinante valida las hipótesis planteadas tanto para el análisis de fuerzas equivalentes como para el dinámico modal espectral.

CONCLUSIONES

- 1. Los resultados de la validación estructural de viviendas informales construidas en Huancayo Metropolitano hasta el año 2017 realizada mediante el análisis de fuerzas equivalentes no cumplen el requisito de rigidez. Esto se debe a tener resultados de derivas mayores al límite de 0,007 en el eje transversal que hace uso del sistema estructural de pórticos. Por el contrario, el eje longitudinal con un sistema estructural de albañilería aporta una gran cantidad de rigidez a la estructura.
- 2. Para el caso del análisis estructural dinámico modal espectral, se obtuvieron menores derivas de entrepiso debido a la combinación modal que se calculó, pero del mismo modo no cumplieron el límite de deriva establecido para el sistema estructural de pórticos en el eje transversal, sobrepasando el valor de 0,007 y para el eje longitudinal pocas de las viviendas sobrepasaron el valor de 0,005.
- 3. Adicionalmente al análisis estructural lineal, se realizó el análisis de muros portantes que dio como resultado errores en el espesor efectivo de estos, lo cual conllevo a una mala densidad mínima de muros reforzados y esto conllevó a tener muros que se fisurarán ante un sismo moderado, así como una inadecuada resistencia a la fuerza cortante provocada por un sismo severo.
- 4. Se tuvieron limitaciones que surgieron en el trabajo de tesis, principalmente no tener acceso al interior de las viviendas debido a la pandemia que nos aqueja, para poder realizar un correcto análisis de la resistencia de los pórticos conformados por elementos de concreto armado en la dirección transversal.

RECOMENDACIONES

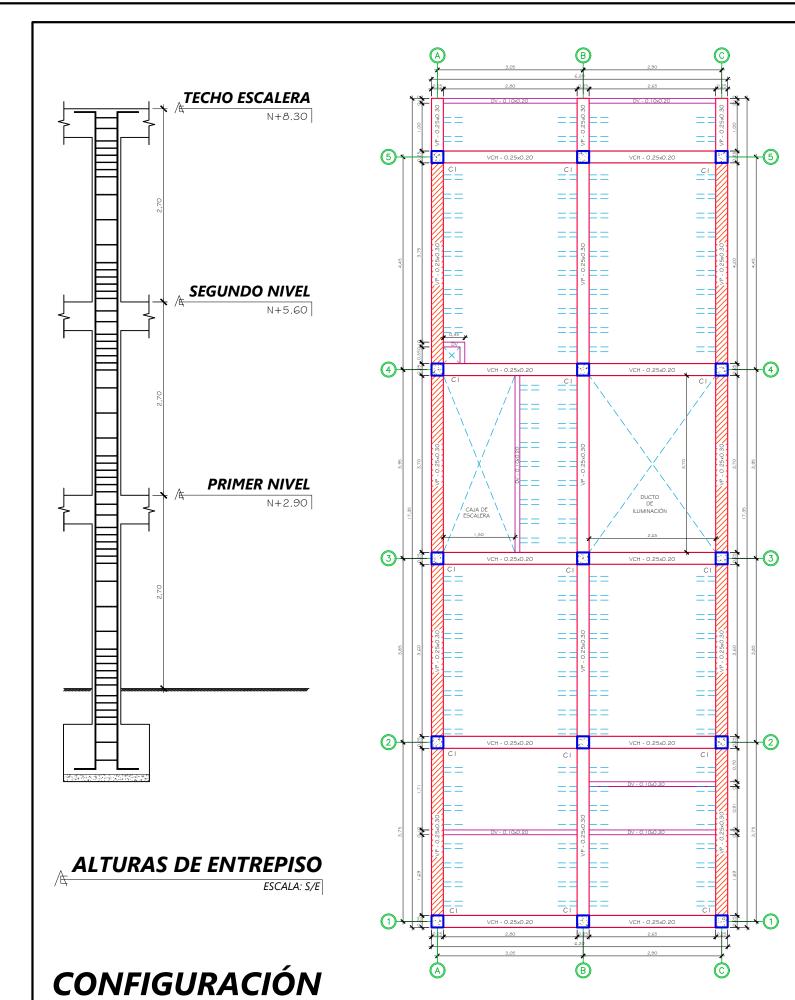
- 1. Es necesario considerar que toda vivienda de 2 o 5 pisos tiene características muy específicas; se debe evitar elaborar planos con criterios estándar ya que se podría tener pérdidas humanas y materiales frente a un movimiento sísmico de gran magnitud.
- Un aspecto importante a considerar es la falta de longitud de anclaje en las columnas que forman los pórticos en estas viviendas informales y ello va de la mano del propietario que prefiere tener más espacio dentro de su vivienda a cambio de la seguridad sísmica.

Así mismo, al tener resultados que incumplen parámetros importantes de la Norma E.030 "Diseño Sismorresistente" por motivos de informalidad de la edificación, se presenta una gama de métodos de reforzamiento estructural en columnas de pórticos de concreto armado y muros portantes de albañilería confinada en base a varios documentos analizados, a modo de presentación. (Ver Anexo 8).

- 3. El diseño de muros portantes se puede mejorar con el asesoramiento de un profesional que previamente valida estructuralmente la edificación. Esta validación tendrá la finalidad de reducir los daños futuros. Las personas suelen optar por un medio más económico de construcción, de forma informal, el cual a futuro genera resultados inapropiados de dicha decisión, la cultura de prevención es muy importante de entenderla y tomarla en cuenta.
- 4. Se recomienda realizar en una investigación futura el análisis de la resistencia de los pórticos de concreto armado ubicados en la dirección transversal de cada vivienda.

REFERENCIAS BIBLIOGRÁFICAS

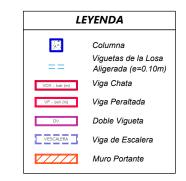
- 1. **TAVERA, HERNANDO.** Evaluación del Peligro Asociado a los Sismos y Efectos Secundarios en Perú. Lima: Instituto Geofísico del Perú, 2014. ISBN: 978-612-45795-9-2.
- 2. **FERNÁNDEZ**, **A y PÁRRAGA**, **C.** Vulnerabilidad Sísmica de Centros Educativos de Huancayo Metropolitano. *Tesis (Título de Ingeniero Civil)*. Huancayo: Universidad Nacional del Centro del Perú, 2013. 235 pp.
- 3. **VERA GONZÁLES, ROXANA YSABEL.** Evaluación del Comportamiento Estructural de una Vivienda Autoconstruida el año 2012, Sector Camino Real II, Calle Tres Marías Provincia de Jaén. *Tesis (Título de Ingeniero Civil)*. Jaén : Universidad Nacional del Cajamarca, 2017. 92 pp.
- 4. **RAMIREZ JULCAMORO, SECUNDINO.** Vulnerabilidad Sísmica aplicando el Método de Benedetti y Petrini en una Institución Educativa, en Jaén, año 2019. *Tesis (Título de Ingeniero Civil)*. Jaén: Universidad Nacional de Jaén, 2020. 205 pp.
- 5. **ARELLANO CARRASCO, VERÓNICA LIZETH.** Evaluación Técnica Constructiva de Vivienda de Interés Social en el Distrito Metropolitano de Quito. Caso de Aplicación: Ciudad Bicentenario Pomasqui. *Tesis (Título de Ingeniero Civil)*. Quito : Pontificia Universidad Católica del Ecuador, 2018. 394 pp.
- 6. **GÓMEZ**, **W.** Análisis comparativo de respuesta sísmica de vivienda de dos pisos de pórticos resistentes a momentos versus de muro portante. *Tesis (Título de Ingeniero Civil)*. Machala: Universidad Técnica de Machala: Ecuador, 2017. 52 pp.
- 7. ESTRADA ARANA, KATHERINE PAOLA y VIVANCO PESÁNTEZ, NICOLE ALEJANDRA. Evaluación de la Vulnerabilida Sísmica, Análisis Estructural y Diseño del Reforzamiento de una Vivienda de Tres Pisos Ubicada en el Norte de Quito Ecuador. *Tesis (Título de Ingeniero Civil)*. Quito : Escuela Politécnica Nacional, 2019. 224 pp.
- 8. TAVERA, HERNANDO. Evaluación del Peligro Asociado a los Sismos y Efectos Secundarios en Perú. Lima: Instituto Geofísico del Perú, 2014. ISBN: 978-612-45795-9-2.
- 9. TAVERA, HERNANDO, AGUERO, CONSUELO y FERNÁNDEZ, EFRAÍN. Catálogo General de Isosistas para Sismos Peruanos. Lima: Instituto Geofísico del Perú, 2016.
- 10. **Urgen US\$ 25 mil para estudiar el Huaytapallana.** Correo. [En línea] Huancayo, Perú, 15 de Agosto de 2014. [Citado el: 15 de Agosto de 2018.] Disponible en: https://diariocorreo.pe/politica-y-economia/urgen-us-25-mil-para-estudiar-el-huaytapallana-370380/.

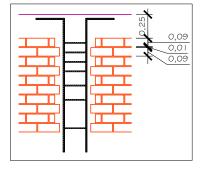

- 11. MACHARÉ ORDÓÑEZ, JOSÉ, BENAVENTE ESCOBAR, CARLOS y AUDIN, LAURENCE. Síntesis Descriptiva del Mapa Neotectónico 2008. Lima : Instituto Geológico Minero y Metalúrgico (INGEMMET), 2009.
- 12. **MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO.** Norma E.030 "Diseño Sismorresistente" RNE. Lima : Diario Oficial "El Peruano", 2018. 30 pp.
- 13. **MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO.** Norma E.020 "Cargas" RNE. Lima : Diario Oficial "El Peruano", 2006. 8 pp.
- 14. **MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO.** Norma E.060 "Concreto Armado" RNE. Lima : Diario Oficial "El Peruano", 2009. 201 pp.
- 15. **MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO.** Norma E.070 "Albañilería" RNE. Lima : Diario Oficial "El Peruano", 2006. 15 pp.
- MUNICIPALIDAD PROVINCIAL DE HUANCAYO. Plan de Desarrollo Urbano 2006 Huancayo: Gerencia de Desarrollo Urbano, 2006. 313 pp.
- 17. **García Reyes, Luis Enrique.** *Dinámica Estructural Aplicada al Diseño Sísmico.* Bogotá: Universidad de los Andes, 1998.
- 18. **OVIEDO SARMIENTO, RICARDO.** *Diseño Sismorresistente de Edificaciones de Concreto Armado.* Lima: Servicios Gráficos DAKYNA, 2016. ISBN: 978-612-47169-1-1.
- 19. SAN BARTOLOMÉ RAMOS, ÁNGEL. Comentarios a la Norma Técnica de Edificación E.070 Albañilería Informe Final (Capítulos 1 a 10). Lima : SENCICO, 2005.
- 20. **GRAHAM H., POWELL.** *Modeling for Structural Analysis.* Berkeley: Computers and Structures, Inc., 2010. ISBN: 978-0-923907-88-4.
- 21. **COMPUTERS & STRUCTURES, INC.** *CSI Analysis Reference Manual.* California : Com put ers & Struc tures, Inc., 2017. ISO# GEN062708M1 Rev.16.
- 22. **ABANTO CASTILLO, FLAVIO.** *Análisis y Diseño de Edificaciones de Albañilería.* Lima: San Marcos, 2017. ISBN: 9786123154103.
- 23. **SAN BARTOLOMÉ RAMOS, ÁNGEL.** Construcciones de Albañilertía: Comportamiento Sísmico y Diseño Estructural. Lima: Fondo Editorial de la Pontificia Universidad Católica del Perú, 1994. ISBN: 84-8390-965-0.
- 24. **BOZZO, LUIS y HARBAT, ALEX.** *Diseño Sismorresistente de Edificios.* Barcelona : Editorial Reverté S.A., 2004. ISBN: 84-291-2011-4.
- 25. **SANTANA TAPIA, RONALD.** *Ingeniería Antisísmica: Principios básicos y aplicaciones.* Huancayo: International Star Student ISS-PERÚ, 2013. ISBN: 978-612-00-1322-9.
- 26. **IGP.** IGP. [En línea] 18 de Agosto de 2018. [Citado el: 18 de Agosto de 2018.] http://www.igp.pe.

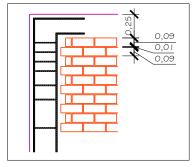
- 27. HERNÁNDEZ SAMPIERI, R, FERNÁNDEZ COLLADO, C y BAPTISTA LUCIO, P. *Metodología de la investigación*. México : McGraw Hill, 2014. ISBN: 978-1-4562-2396-0.
- 28. ÑAUPAS PAITÁN, HUMBERTO, y otros. *Metodología de la investigación cuantitativa cualitativa y redacción de la tesis.* Bogotá : Ediciones de la U, 2014. ISBN: 978-958-762-188-4.
- 29. **MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO.** Norma E.020 "Cargas" RNE. Lima : Diario Oficial "El Peruano", 1985. 24 pp.
- 30. **SAN BARTOLOMÉ RAMOS, ÁNGEL.** *Análisis de Edificios.* Lima : Fondo Editorial de la Pontificia Universidad Católica del Perú., 1998. ISBN: 9972-42-112-0.

ANEXOS

- ANEXO 1: PLANOS ESTRUCTURALES DE LAS VIVIENDAS CRÍTICAS SEGÚN EL NÚMERO DE PISOS
- ANEXO 2: HOJAS DE CÁLCULO DEL ANÁLISIS ESTÁTICO, ANÁLISIS
 DINÁMICO MODAL ESPECTRAL Y ANÁLISIS DE MUROS PORTANTES DE
 LAS VIVIENDAS CRÍTICAS SEGÚN EL NÚMERO DE PISOS
- ANEXO 3: ANÁLISIS DEL EFECTO DE LOS ELEMENTOS NO ESTRUCTURALES
- ANEXO 4: MODELADOS ESTRUCTURALES EN GENERAL
- ANEXO 5: PLANO DE LOCALIZACIÓN DE CAPACIDAD PORTANTE EN HUANCAYO METROPOLITANO
- ANEXO 6: CONFIABILIDAD DEL ESTUDIO
- ANEXO 7: ENSAYO DE ESCLEROMETRÍA
- ANEXO 8: MÉTODOS DE REFORZAMIENTO ESTRUCTURAL EN COLUMNAS DE PÓRTICOS DE CONCRETO ARMADO Y MUROS PORTANTES DE ALBAÑILERÍA CONFINADA.


ANEXO 1: PLANOS ESTRUCTURALES DE LAS VIVIENDAS CRÍTICAS SEGÚN EL NÚMERO DE PISOS




ESTRUCTURAL

	DIRECCIÓN TRANSVERSAL	DIRECCIÓN LONGITUDINAL
SIST. ESTR. SISMORRESISTENTE	Pórticos	Albañilería Confinada
PERÍODO FUND. DE VIBRACIÓN	0.651 s	0.078 s
	PARÁMETRO	OS SÍSMICOS
Z (Factor de Zona):	Zona 3 - 0.35	Zona 3 - 0.35
U (Factor de Uso o Importancia):	C - Edif. Comunes - 1.0	C - Edif. Comunes - 1.0
C (Factor de Amplif. Sísmica):	Tp <t<ti -="" 2.30<="" td=""><td>T < Tp - 2.5</td></t<ti>	T < Tp - 2.5
S (Factor de Amplif. del Suelo):	S2 - 1.15	S2 - 1.15
Ro (Coef. Básico de Reducción):	8	3
Ia (Factor de Irreg. en Altura):	1	1
Ip (Factor de Irreg. en Planta):	1	1
R (Coef. de Reduc. Fuer. Sísm.):	8	3
	ANÁLISIS DE FUERZAS ES	TÁTICAS EQUIVALENTES
FUERZA CORTANTE:	19.562 ton	56.607 ton
DESPL. MÁX. ÚLTIMO NIVEL:	3.455 cm	0.629 cm
MÁX. DISTOR. DE ENTREPISO:	0.033185	0.004428
	ANÁLISIS DINÁMICO	MODAL ESPECTRAL
FUERZA CORTANTE:	13.391 ton	46.970 ton
DESPL. MÁX. ÚLTIMO NIVEL:	2.409 cm	0.315 cm
MÁX. DISTOR. DE ENTREPISO:	0.023119	0.001880

ESPECIFICACIONES CO	ONCRETO
Peso Específico "Yc":	2 400 kg/m³
Resistencia a la Compresión "f'c":	175 kg/cm²
Módulo de Elasticidad "Ec=15000x√(f'c)":	198 431.35 kg/cm²
Módulo de Corte "Gc=Ec/2.3":	86 274.50 kg/cm ²
Módulo de Poisson "µc":	0.15 → Rígido
ESPECIF. ACERO DE REFUER.	ZO - GRADO 60
Peso Específico "Ys":	7 850 kg/m³
Esfuerzo de fluencia "fy":	4 200 kg/cm ²
Módulo de Elasticidad "Es":	2 000 000 kg/cm ²
ESPECIFICACIONES ALBAÑILE	RÍA CONFINADA
Unidades de Arcilla:	King Kong - Artesanal
Espesor efectivo del ladrillo "t":	13 cm
Peso Específico "Ym":	1 800 kg/m³
Resistencia a la Compresión "fm":	35 kg/cm²
Módulo de Elasticidad "Em=500xf'm":	17 500 kg/cm ²
Módulo de Corte "Gm = 0.4xEm"	7 850 kg/cm ²
Módulo de Poisson "µm":	0.25 → Dúctil, Flexible

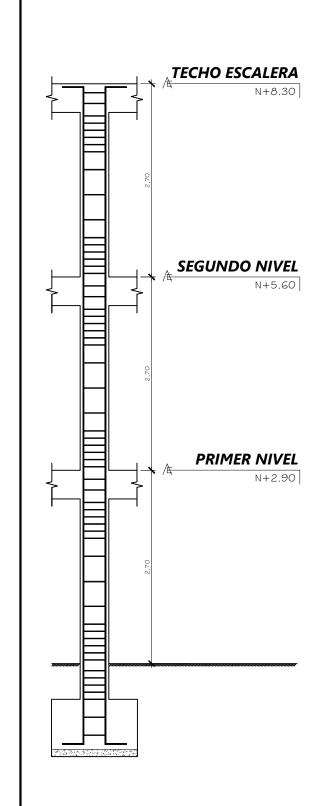
DETALLE DE MURO PORTANTE

Facultad de Ingeniería - Carrera Profesional de Ingeniería Civil

SUSTENTANTE

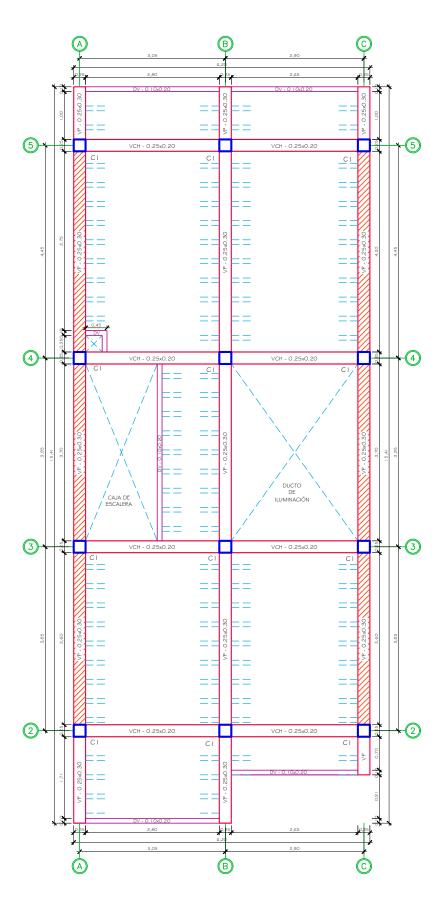
BACH. ANTONI JUNIOR CUTISACA LAURA

PLANO

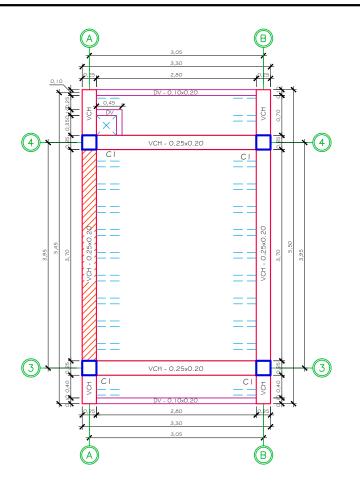

UBICACIÓN HUANCAYO - JUNÍN - PERÚ FECHA ESCALA 2020 S/E

LÁMINA

PRIMER NIVEL $CM = 360 \text{ kg/m}^2$, $C.V = 200 \text{ kg/m}^2$, (esp. losa alig. - 0.20)

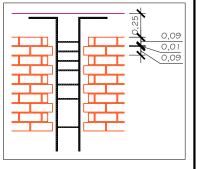

UNIVERSIDAD CONTINENTAL

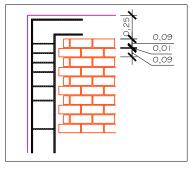
CONFIGURACIÓN **ESTRUCTURAL**



CONFIGURACIÓN **ESTRUCTURAL**

SEGUNDO NIVEL $CM = 360 \text{ kg/m}^2$, $C.V = 200 \text{ kg/m}^2$, (esp. losa alig. - 0.20)




TECHO DE ESCALERA

 $CM = 210 \text{ kg/m}^2$, $C.V = 100 \text{ kg/m}^2$, (esp. losa alig. - 0.20)

	DIRECCIÓN TRANSVERSAL	DIRECCIÓN LONGITUDINAL
SIST. ESTR. SISMORRESISTENTE	Pórticos	Albañilería Confinada
PERÍODO FUND. DE VIBRACIÓN	0.651 s	0.078 s
	PARÁMETRO	OS SÍSMICOS
Z (Factor de Zona):	Zona 3 - 0.35	Zona 3 - 0.35
U (Factor de Uso o Importancia):	C - Edif. Comunes - 1.0	C - Edif. Comunes - 1.0
C (Factor de Amplif. Sísmica):	Tp <t<ti -="" 2.30<="" th=""><th>T < Tp - 2.5</th></t<ti>	T < Tp - 2.5
S (Factor de Amplif. del Suelo):	S2 - 1.15	S2 - 1.15
Ro (Coef. Básico de Reducción):	8	3
la (Factor de Irreg. en Altura):	1	1
Ip (Factor de Irreg. en Planta):	1	1
R (Coef. de Reduc. Fuer. Sísm.):	8	3
	ANÁLISIS DE FUERZAS ES	STÁTICAS EQUIVALENTE
FUERZA CORTANTE:	19.562 ton	56.607 ton
DESPL. MÁX. ÚLTIMO NIVEL:	3.455 cm	0.629 cm
MÁX. DISTOR. DE ENTREPISO:	0.033185	0.004428
	ANÁLISIS DINÁMICO	MODAL ESPECTRA
FUERZA CORTANTE:	13.391 ton	46.970 ton
DESPL. MÁX. ÚLTIMO NIVEL:	2.409 cm	0.315 cm
MÁX. DISTOR. DE ENTREPISO:	0.023119	0.001880

LEYENDA Viguetas de la Losa Aligerada (e=0.10m) Viga Chata Viga Peraltada Doble Vigueta Viga de Escalera Muro Portante

DETALLE DE MURO PORTANTE

ESPECIFICACIONES CONCRETO

Resistencia a la Compresión "f'c": 198 431.35 kg/cm² Módulo de Elasticidad "Ec=15000x√(f'c)": 86 274.50 kg/cm² Módulo de Corte "Gc=Ec/2.3": Módulo de Poisson "μc": 0.15 → Rígido

ESPECIF. ACERO DE REFUERZO - GRADO 60

Peso Específico "¿s": 4 200 kg/cm² Esfuerzo de fluencia "fv": Módulo de Elasticidad "Es":

ESPECIFICACIONES ALBAÑILERÍA CONFINADA

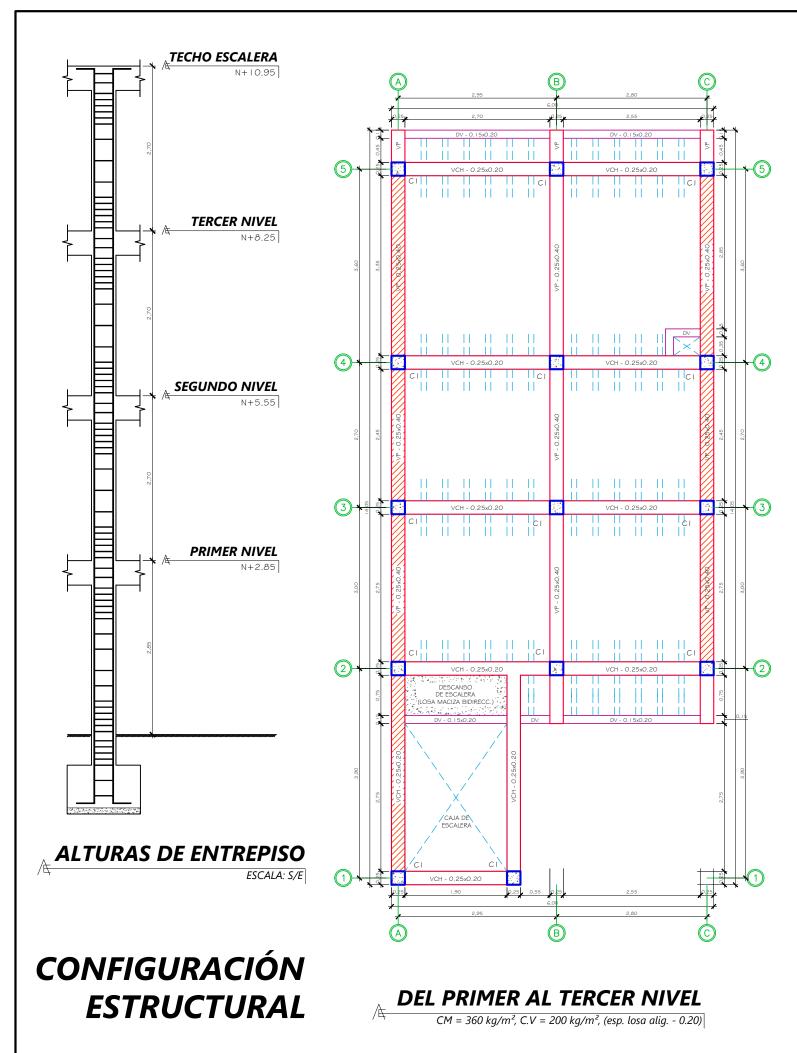
Unidades de Arcilla: King Kong - Artesanal Espesor efectivo del ladrillo "t' 13 cm 1 800 kg/m³ Resistencia a la Compresión "f'm". 35 kg/cm² 17 500 kg/cm² Módulo de Elasticidad "Em=500xf'm". 7 850 kg/cm² 0.25 → Dúctil, Flexible

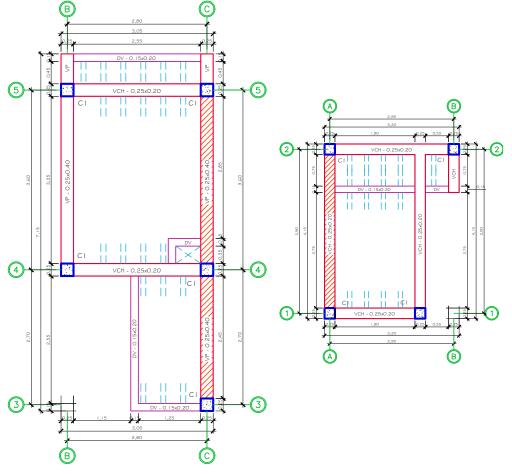
UNIVERSIDAD CONTINENTAL

Facultad de Ingeniería - Carrera Profesional de Ingeniería Civil

SUSTENTANTE

BACH. ANTONI JUNIOR CUTISACA LAURA

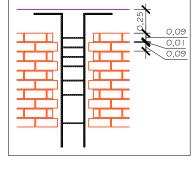

1/100

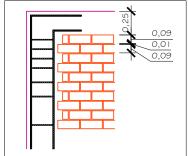

PLANO

CONFIGURACIÓN **ESTRUCTURAL**

UBICACIÓN HUANCAYO - JUNÍN - PERÚ FECHA ESCALA 2020

LÁMINA




TECHO DE ESCALERA

 $CM = 210 \text{ kg/m}^2$, $C.V = 100 \text{ kg/m}^2$, (esp. losa alig. - 0.20)

	DIRECCIÓN TRANSVERSAL	DIRECCIÓN LONGITUDINAL
SIST. ESTR. SISMORRESISTENTE	Pórticos	Albañilería Confinada
PERÍODO FUND. DE VIBRACIÓN	1.023 s	0.124 s
	PARÁMETRO	OS SÍSMICOS
Z (Factor de Zona):	Zona 3 - 0.35	Zona 3 - 0.35
U (Factor de Uso o Importancia):	C - Edif. Comunes - 1.0	C - Edif. Comunes - 1.0
C (Factor de Amplif. Sísmica):	Tp <t<ti -="" 1.47<="" td=""><td>T < Tp - 2.5</td></t<ti>	T < Tp - 2.5
S (Factor de Amplif. del Suelo):	S2 - 1.15	S2 - 1.15
Ro (Coef. Básico de Reducción):	8	3
la (Factor de Irreg. en Altura):	1	1
Ip (Factor de Irreg. en Planta):	0.90	0.9
R (Coef. de Reduc. Fuer. Sísm.):	7.20	2.70
	ANÁLISIS DE FUERZAS ES	STÁTICAS EQUIVALENTES
FUERZA CORTANTE:	18.491 ton	84.106 ton
DESPL. MÁX. ÚLTIMO NIVEL:	5.756 cm	0.912 cm
MÁX. DISTOR. DE ENTREPISO:	0.038807	0.004279
	ANÁLISIS DINÁMICO	MODAL ESPECTRAL
FUERZA CORTANTE:	13.313 ton	62.406 ton
DESPL. MÁX. ÚLTIMO NIVEL:	3.915 cm	0.621 cm
MÁX. DISTOR. DE ENTREPISO:	0.026298	0.003143

DETALLE DE MURO PORTANTE

ESPECIFICACIONES CONCRET	
--------------------------	--

Peso Específico "¿c": 2 400 kg/m³ Resistencia a la Compresión "f'c": 198 431.35 kg/cm² Módulo de Elasticidad "Ec=15000x√(f'c)": Módulo de Corte "Gc=Ec/2.3": 86 274.50 kg/cm² Módulo de Poisson "μc": 0.15 → Rígido

ESPECIF. ACERO DE REFUERZO - GRADO 60

Peso Específico "Ys" Esfuerzo de fluencia "fy": 4 200 kg/cm² Módulo de Elasticidad "Es":

ESPECIFICACIONES ALBAÑILERÍA CONFINADA

King Kong - Artesanal Unidades de Arcilla: Espesor efectivo del ladrillo "t' 13 cm Peso Específico "Ym" 1 800 kg/m³ Resistencia a la Compresión "f'm". 35 kg/cm² Módulo de Elasticidad "Em=500xf'm". 17 500 kg/cm² Módulo de Corte "Gm = 0.4xEm" 7 850 kg/cm² 0.25 → Dúctil, Flexible

UNIVERSIDAD CONTINENTAL

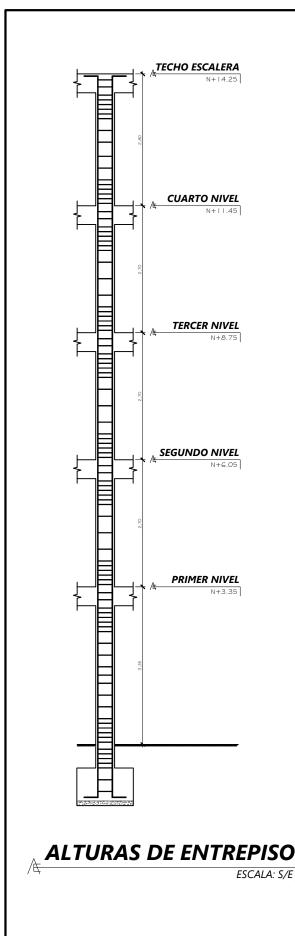
Facultad de Ingeniería - Carrera Profesional de Ingeniería Civil

ESCALA

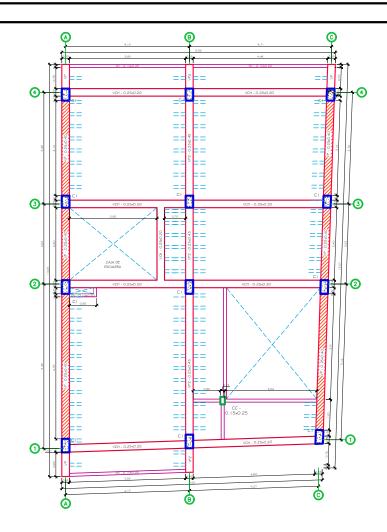
SUSTENTANTE

BACH. ANTONI JUNIOR CUTISACA LAURA

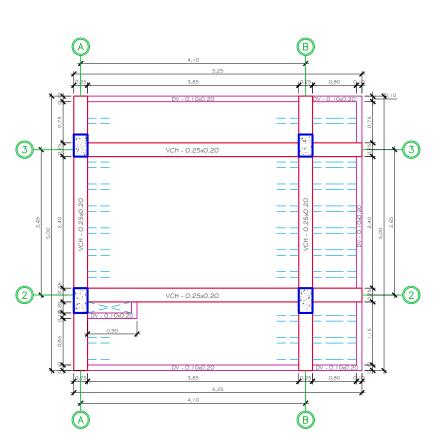
S/E


PLANO

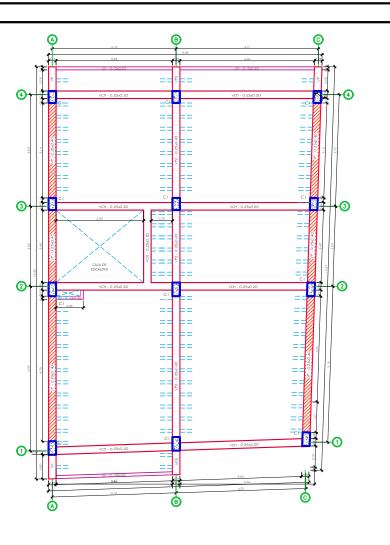
CONFIGURACIÓN **ESTRUCTURAL**


UBICACIÓN HUANCAYO - JUNÍN - PERÚ

LÁMINA


FECHA 2020

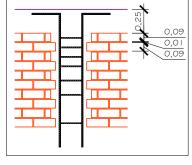
CONFIGURACIÓN ESTRUCTURAL

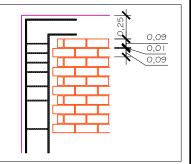


PRIMER NIVEL CM = 360 kg/m², C.V = 200 kg/m², (esp. losa alig. - 0.20)

TECHO DE ESCALERA

 $CM = 210 \text{ kg/m}^2$, $C.V = 100 \text{ kg/m}^2$, (esp. losa alig. - 0.20)




DEL SEGUNDO AL CUARTO NIVEL

 $CM = 360 \text{ kg/m}^2$, $C.V = 200 \text{ kg/m}^2$, (esp. losa alig. - 0.20)

	DIRECCIÓN TRANSVERSAL	DIRECCIÓN LONGITUDINAL
SIST. ESTR. SISMORRESISTENTE	Pórticos	Albañilería Confinada
PERÍODO FUND. DE VIBRACIÓN	1.284 s	0.201 s
	PARÁMETRO	OS SÍSMICOS
Z (Factor de Zona):	Zona 3 - 0.35	Zona 3 - 0.35
U (Factor de Uso o Importancia):	C - Edif. Comunes - 1.0	C - Edif. Comunes - 1.0
C (Factor de Amplif. Sísmica):	Tp <t<ti -="" 1.17<="" td=""><td>T < Tp - 2.5</td></t<ti>	T < Tp - 2.5
S (Factor de Amplif. del Suelo):	S2 - 1.15	S2 - 1.15
Ro (Coef. Básico de Reducción):	8	3
la (Factor de Irreg. en Altura):	1	1
Ip (Factor de Irreg. en Planta):	1	1
R (Coef. de Reduc. Fuer. Sísm.):	8	3
	ANÁLISIS DE FUERZAS ES	STÁTICAS EQUIVALENTES
FUERZA CORTANTE:	23.411 ton	133.633 ton
DESPL. MÁX. ÚLTIMO NIVEL:	6.021 cm	1.204 cm
MÁX. DISTOR. DE ENTREPISO:	0.035091	0.004599
	ANÁLISIS DINÁMICO MODAL ESPECTRA	
FUERZA CORTANTE:	17.717 ton	94.798 ton
DESPL. MÁX. ÚLTIMO NIVEL:	4.088 cm	1.467 cm
MÁX. DISTOR. DE ENTREPISO:	0.024416	0.008159

DETALLE DE MURO PORTANTE

Comentario:
Columnas entre muros portantes dentados en esquina y entre dos muros portantes.

ESPECIFICACIO	NES CONCRETO
Fanacífica "Va":	2 400 km/m

Resistencia a la Compresión "fc": 175 kg/cm²

Módulo de Elasticidad "Ec=15000x $\sqrt{(fc)}$ ": 184 431.35 kg/cm²

Módulo de Corte "Gc=Ec/2.3": 86 274.50 kg/cm²

Módulo de Poisson " μ c": 0.15 \Rightarrow Rígido

ESPECIF. ACERO DE REFUERZO - GRADO 60

 Peso Específico "Ys":
 7 850 kg/m³

 Esfuerzo de fluencia "fy":
 4 200 kg/cm²

 Módulo de Elasticidad "Es":
 2 000 000 kg/cm²

ESPECIFICACIONES ALBAÑILERÍA CONFINADA

Unidades de Arcilla: King Kong - Artesanal Espesor efectivo del ladrillo "t": 13 cm

Peso Específico " γm ": 1 800 kg/m²

Resistencia a la Compresión "fm": 35 kg/cm²

Módulo de Elasticidad "Em=500xfm": 17 500 kg/cm²

Módulo de Corte "Gm = 0.4xEm" 7 850 kg/cm²

Módulo de Poisson " μm ": 0.25 \Rightarrow Dúctil, Flexible

UNIVERSIDAD CONTINENTAL

Facultad de Ingeniería - Carrera Profesional de Ingeniería Civil

SUSTENTANTE

BACH. ANTONI JUNIOR CUTISACA LAURA

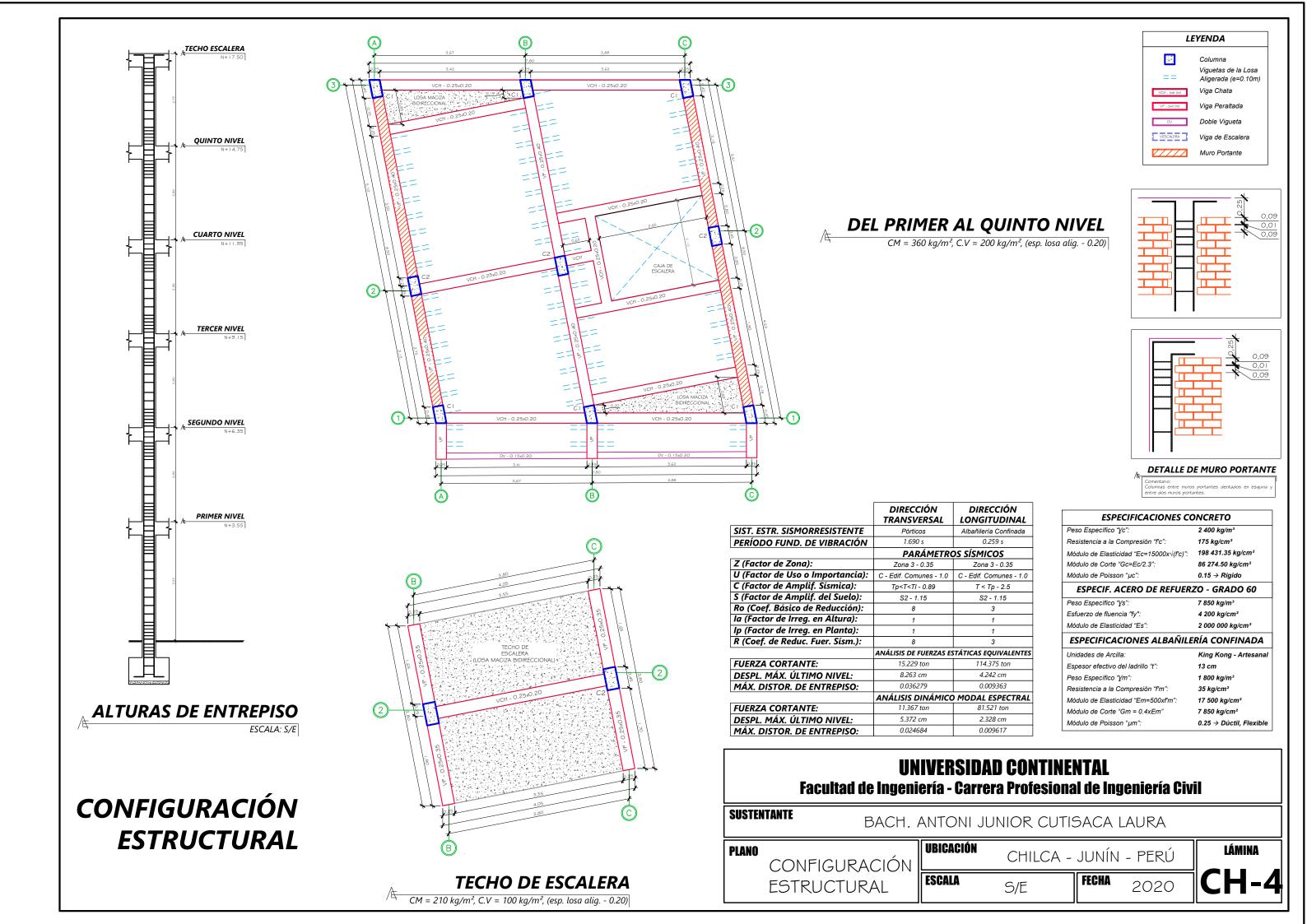
S/E

PLANO

CONFIGURACIÓN ESTRUCTURAL

UBICACIÓN

ESCALA


EL TAMBO - JUNÍN - PERÚ

FECHA

2020

ET-5

LÁMINA

ANEXO 2: HOJAS DE CÁLCULO DEL ANÁLISIS ESTÁTICO, ANÁLISIS DINÁMICO MODAL ESPECTRAL Y ANÁLISIS DE MUROS PORTANTES DE LAS VIVIENDAS CRÍTICAS SEGÚN EL NÚMERO DE PISOS

FICHA DE CAWIFO		
<u>Datos Generales :</u>		
CÓDIGO	: HU-5	
UBICACIÓN	: HUANCAYO	
AÑO DE CONSTRUCCIÓN	:JUNIO 2017	
NÚMERO DE PISOS	: 2 PISOS + AZOTEA	
USO FINAL	: VIVIENDA	
<u>Datos Técnicos :</u>		
ALTURA TOTAL	: 8.10 m	
PERFIL DE SUELO	: S2 - SUELO INTERMEDIO	
SISTEMA ESTRUCTURA EJE LONG.	: ALBAÑILERÍA CONFINADA	
SISTEMA ESTRUCTURA EJE TRAN.	: PÓRTICOS	
ESPESOR DE MUROS PORTANTES	: 13 cm	
TIPO DE LADRILLO EN MUROS	: ARTESANAL	
TIPO DE LOSA Y DIRECCIÓN	· I A 1D - TRANSVERSAL	

JUNTAS SÍSMICAS

Elaborado por: Cutisaca Antoni

NO

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE TRANSVERSAL

Paso 1: Factor de Zona Z (Artículo 10)	
Región (Dpto.): Junín	
Provincia:	Huancayo
Distrito: Huancayo	Huancayo
	Zona 3
Z:	0.35

S2: Suelos Intermedios

Paso 3: Parámetros de Sitio S, T _P y T _L (Artículo 13)	
S:	1.15
T _{P(seg)} =	0.60
T _{L(seg)} =	2.00

Paso 4: Factor de amplificación sísmica		
C _{T(inicial)} =	2.50	

_	-	
	h _{1(m)} =	2.70
	h _{TÍPICO(m)} =	2.70
	h _{techo escalera(m)} =	2.70
	N° _{NIVELES} =	2
.)	h _{n(m)} =	8.10
	CT =	35
	T _{estimado(seg)} =	0.23

ETAPA 2: CARACTERIZACIÓN DEL EDIFICIO (Capítulo III)

Paso 5: Categoría de la edificación	n y el Factor de Uso (Artículo 15	6)
C-Edificaciones Comunes		
le .	1.00	

Paso 6: Sistema	Estructural ()	Artículos 16 v 1	7)

S.E. permitidos:	Cualquier sistema
S.E. para analizar:	Pórticos

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Ro _{Tilniciali} =	8.00	i

Paso 8: Factores de Irregularidad Ia, Ip (Artículo 20)

	* Primera Verificació	n de Irregularidad	es	
Irregularidades Iniciales				
* Irregularidades en altura:				
2a) Irregularidad de resistencia - piso débil				1.00
No se presenta irregularidad de resistencia porque las secciones no va	arían en ninguno de los		¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RESISTENCIA - PISO DÉBIL!	

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	M _i > 1.5M _{i+1}	M _i > 1.5M _{i-1}		
Techo Escalera	1204.6307	No Aplica	No Aplica	¡LA ESTRUCTURA NO PRESENTA	1.0
Azotea	6760.2673	No Aplica	No Aplica	IRREGULARIDAD DE MASA!	
1	9244.4223	No Aplica		•	

4a) Irregularidad geométrica vertical

No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como

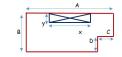
¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD GEOMÉTRICA VERTICAL!	1.00

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS

RESISTENTES!

¡LA ESTRUCTURA NO PRESENTA ESQUINAS

ENTRANTESI


muros estructurales parten desde el primer nivel hasta el último.

ı					
A =	17.35	m	B =	6.2	m
C =	0	m	D =	0.00	m
C/A =	0.00	> 0.20?	Y/B =	0.0000	> 0.20?

3p) Discontinuidad del Diafragma

* Irregularidades en planta:

2p) Esquinas entrantes

(AxB)-(CxD) =	107.57	m2	AT(1X) = (B-y).esp.	0.50	m2
x =	4.15	m	AT(2X) = B.esp.	1.24	m2
y =	3.70	m	AT(1X)/ AT(2X)=	0.40	< 0.25?
xy =	15.36	m2			
xv / (AxB)-(CxD) =	0.14	> 0.50?			

ILA ESTRUCTURA NO PRESENTA DISCONTINUIDAD DE DIAFRAGMA!

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE LONGITUDINAL

Paso I. Pactor de Zoria Z (Articulo 10)			
Junín			
Huancayo			
Huancayo			
Zona 3			
0.35			

S2: Suelos Intermedios

Paso 3: Parámetros de Sitio S, T _P y T _L (Artículo 13)		
S:	1.15	
T _{P(seg)} =	0.60	
T _{L(seq)} =	2.00	

Paso 4: Factor de amplificación sísmica		
C _{1 (Interior)} =	2.50	

	_	
	h _{1(m)} =	2.70
	h _{TÍPICO(m)} =	2.70
	h _{techo escalera(m)} =	2.70
	N° _{NIVELES} =	2
ر	h _{n(m)} =	8.10
	CT =	60
	Tartimodo(ren) =	0.14

Paso 5: Categoria de la edificación y	el Factor de Uso (Articulo 15)		
C-Edificaciones Comunes			
U: 1.00			

Paso 6: Sistema Estructural (Artículos 16 y 17)

S.E. permitidos:	Cualquier sistema
S.E. para analizar:	Albañilería Confinada

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Paso 8: Factores de Irregularidad la, Ip (Artículo 20)

* Primera Verificación de Irro	egularidades	
Irregularidades Iniciales		
* Irregularidades en altura:	_	
2a) Irregularidad de resistencia - piso débil	:LA ESTRUCTURA NO PRESENTA	1.00
No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los	IRREGULARIDAD DE RESISTENCIA - PISO	

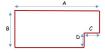
3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	M ₁ > 1.5M _{i+1}	M _i > 1.5M _{i-1}		
Techo Escalera	1204.6307	No Aplica	No Aplica	¡LA ESTRUCTURA NO PRESENTA	1.00
Azotea	6760.2673	No Aplica	No Aplica	IRREGULARIDAD DE MASA!	
1	9244.4223	No Aplica			

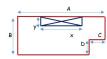
4a) Irregularidad geométrica vertical

No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

5a) Discontinuidad en los Sistemas Resistentes


No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS RESISTENTES!


* Irregularidades en planta:

2p) Esquinas entrantes

A =	17.35	m	B =	6.2	m
C =	0	m	D =	0	m
C/A =	0.00	> 0.20?	D/B =	0.0000	> 0.20?
		¡LA ESTRUCTURA NO PRESENTA ESQUINAS ENTRANTES!			1.00
		1			

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	107.57	m2	AT(1Y) = (A-x).esp.	2.64	m2
x =	4.15	m	AT(2Y) = Axesp.	3.47	m2
y =	3.70	m	AT(1Y)/ AT(2Y)=	0.76	< 0.25?
xy =	15.36	m2			
xy / (AxB)-(CxD) =	0.14	> 0.50?			

¡LA ESTRUCTURA NO PRESENTA	Ī
DISCONTINUIDAD DE DIAFRAGMAI	

4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes

a _{T(inicial)} =	1.00
p _{T/iniciali} =	1.00

Paso 9: Restricciones a la Irregularidad (Artículo 21)

Restricciones:	No se permiten irregularidades extremas
----------------	---

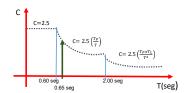
Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22)

R _{T(inicial)} =	8.00
---------------------------	------

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)

		(Artículo 3	

MODELADO EN I	ETABS v.16.1.2		
* Coef. V _{T-basal-inicial,} C _(ETABS) =	0.125781		PRIMER ANÁLISIS DEL MODELADO
* k _{T-(exp. de distrib. en altura-inicial)} =	1.0000	≥ 2? (no considerar	


Modo	Periodo (seg)	UX	Sum UX	RZ	Sum RZ
1	0.766	0.7726	0.7726	0.0076	0.0076
2	0.26	0.1344	0.9069	0.0044	0.012
3	0.237	0.0021	0.909	0.0182	0.0302
4	0.17	0.0846	0.9936	0.1544	0.1846
5	0.154	0.0064	1	0.7175	0.902
6	0.092	0.00000108	1	0.0134	0.9154
7	0.068	0.000001461	1	0.083	0.9984
8	0.053	0	1	0.0015	1
9	0.036	0	1	0.00003582	1

T _{T-final(seg)} =	0.651		
C _{T/floath} =	2.30	1	

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO

PARALELOS!

* Verificación Inicial del Factor	"Ro _{T(inicial}

V _{T-inicial(ton)} =	21.228				
Muros (ton-ETABS)	1.634		Pórt	icos	OK!
Columnas (ton-ETABS)	19.59		El cortante que toman los Muros es		
%Absorción de Muros	7.698	,	menor al 20%		
			Ro =	8	

Irregularidades Finales

1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	2.5669		
Azotea	8.6958	3.388	
1	23 0931	2 656	4 101

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE

RIGIDEZ!

2a) Irregularidad de Resistencia - Piso Débil	1.00
3a) Irregularidad de masa o peso	1.00
4a) Irregularidad geométrica vertical	1.00
5a) Discontinuidad en los Sistemas Resistentes	1.00

4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes

ortogonales.

la_{L(inicial)} = 1.00 Ip_{L(inicial)} = 1.00

Paso 9: Restricciones a la Irregularidad (Artículo 21)

No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22)

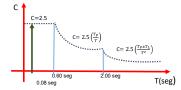
3.00

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)

Paso 11: Modelos de Análisis (Artículo 25)

MODELADO EN E	TABS v.16.1.2				
* Coef. V _{L-basal-inicial,} C _(ETABS) =	0.335417		PRIMER.	ANÁLISIS DEL MODELADO	
* k _{L-(exp. de distrib. en altura-inicial)} =	1.0000	≥ 2? (no considerar)			

Modo	Periodo (seg)	UY	Sum UY
1 0.766		0	0
2	0.26	0.0002	0.0002
3	0.237	0.0212	0.0214
4	0.17	0.0006	0.022
5	0.154	0.0109	0.0329
6	0.092	0.8186	0.8515
7	0.068	0.02	0.8715
8	0.053	0.0609	0.9324
9	0.036	0.0676	1


T _{L-final(seg)} =	0.078	
C _{L(finall)} =	2.50	

¡LA ESTRUCTURA NO PRESENTA SISTEMAS

NO PARALELOS!

 $T = 0.85 \left(2\pi \sqrt{\frac{\sum_{i=1}^{n} P_i \cdot d_i^2}{g \sum_{i=1}^{n} f_i \cdot d_i}} \right)$

V _{L-inicial(ton)} =	56.607	
Muros (ton-ETABS)	54.157	
Columnas (ton-ETABS)	2.45	
%Absorción de Muros	95.67	,

Irregularidades Finales

* Irregularidades en altura:

1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	26.2113		
Azotea	784.2569	29.921	
1	1162 1132	1.482	2.868

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ

2a) Irregularidad de Resistencia - Piso Débil

3a) Irregularidad de masa o peso 4a) Irregularidad geométrica vertical

5a) Discontinuidad en los Sistemas Resistentes

* Irregularidades en planta:

	Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
	Techo Escalera	1.15167882	270	0.0043	0.0035	EVALUAR
	Azotea	1.59605091	270	0.0059	0.0035	EVALUAR
	1	0.97205958	2 70	0.3600	0.0035	EVALUAR

* Evaluación de la Irregularidad Torsional

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	3.6827477	3.64829177	1.0094
Azotea	2.56651291	2.51772759	1.0194
1	0.97205958	0.91921714	1.0575

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD	1.00
TORSIONAL!	
On) Familian automata	4.00

3p) Discontinuidad del Diafragma 4p) Sistemas no Paralelos

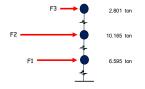
Ia _{T(final)} =	1.00	
Ip _{T(final)} =	1.00	

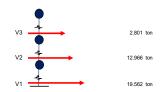
≤ 0.11? (no considerar)

	* Veri	ficación la o Ip diferentes en ambas direcciones
Ia _(final) =	1.00	
In =	1.00	

ESTRUCTURA REGULAR 8.00 0.287974198

* Coef. V _{T-basal final,} C _(ETABS) =	0.115910		SEGUNDO ANÁLISIS DEL MODELADO
* k _{T-(exp. de distrib. en altura-final)} =	1.075550	≥ 2? (no considerar)	


Paso 12: Estimación del Peso P (Artículo 26) C-Edificaciones Comunes 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	11.813
Azotea	66.296
1	90.657
P =	168 766

Paso 13A: Análisis Estático (Artículo 28)

i

Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi) ^k	α_{i}	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	11.81	8.10	9.49	112.07	0.143	2.801	2.801
Azotea	66.30	5.40	6.13	406.64	0.520	10.165	12.966
1	90.66	2.70	2.91	263.85	0.337	6.595	19.562
•	•	•	7	782.56	1,000	10.562	OKI

Estructuras de muros portantes de Albañilería confinada de no mas

Ro _{T (inicial)} =	8.00		
SISTEMA ESTRUCURAL:	Pórticos		
V _{T(ton)} =	19.562		
Muros (ton-ETABS)	1.50		Pórticos
Columnas (ton-ETABS)	18.06		El cortante que toman los Muros es
%Absorción de Muros	7.68	, i	menor al 20%

* Irregularidades en planta:

1p) Irregularidad Torsional y Torsional Extrema

Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	0.53303478	270	0.0020	0.0025	NO EVALUAR
Azotea	0.04831484	270	0.0002	0.0025	NO EVALUAR
1	0.04897006	2 70	0.0181	0.0025	EVALUAR

* Evaluación de la Irregularidad Torsional

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	0.62858642	0.39228725	1.6024
Azotea	0.0972849	0.09559425	1.0177
- 1	0.04807006	0.04871028	1.0053

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD TORSIONAL!	1.00
2p) Esquinas entrantes	1.00
3p) Discontinuidad del Diafragma	1.00
4p) Sistemas no Paralelos	1.00

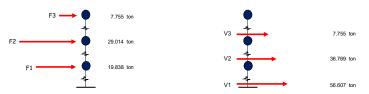
Ia _{L(final)} =	1.00
Ip _{1 (final)} =	1.00

	* Verific	ación la o Ip diferentes en ambas direcciones
Ia _(final) =	1.00	
In =	1.00	

		* Verificación C _T /R _T
C _L /R _L =	0.83333333	≤ 0.11? (no considerar)

* Coef. V _{L-basal-final} , C _(ETABS) =	0.335417		SEGUNDO ANÁLISIS DEL MODELADO
* k	1.000000	> 22 (no considerar)	

Paso 12: Estimación del Peso P (Artículo 26) C-Edificaciones Comunes 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	11.813
Azotea	66.296
1	90.657
P =	168 766

Paso 13A: Análisis Estático (Artículo 28)

	Calculo	de la luerza cortante en la base i	(Hullieral 20
V =	56 607		

ESTRUCTURA REGULAR

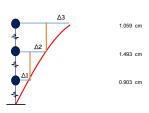
Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi)k	α_i	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	11.813	8.10	8.10	95.69	0.137	7.755	7.755
Azotea	66.296	5.40	5.40	358.00	0.513	29.014	36.769
1	90.657	2.70	2.70	244.77	0.350	19.838	56.607
		•	7	608.46	1 000	EC C07	OKI

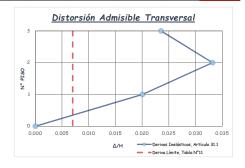
ETAPA 4A: VALIDACIÓN DE LA ESTR	UCTURA (Capítulo IV)

Paso 14A: Revisión de la Hipótesis del Análisis

Estructuras de muros portantes de Albañilería confinada de no mas de

Ro _{Linicial)} =	3.00			
SISTEMA ESTRUCURAL:	Albañilería Confinada			
V _{L(ton)} =	56.61			
Muros (ton-ETABS)	54.16		Albañilería Confinada	OK!
Columnas (ton-ETABS)	2.45		El cortante que toman los Muros es	
%Absorción do Muros	95.67	1	mayor al 70%	


Paso 15A: Restricciones a la Irregularidad (Artículo 21)


No se permiten irregu	OK	
Ia _(final) =	1.00	
Ip _(final) =	1.00	
R _{Tiffinali} =	8.00	

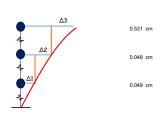
Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	3.455
Azotea	2.396
1	0.903

aso 17A. distorsion Admissible (Articulo 32)							
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	3.455	1.058662	270.00	0.003921	0.023526	0.007	RIGIDIZAR
Azotea	2.396	1.493323	270.00	0.005531	0.033185	0.007	RIGIDIZAR
1	0.903	0.003630	270.00	0.003343	0.020050	0.007	PIGIDIZAR

Der. Elás. x 0.75 x R

Paso 18A: Separación entre Edificios (Artículo 33)


	* mínimo _(cm) =	1.50	Ι.			
S/2 ≥	* 0.006h/2 _(cm) =	2.43		>	S/2 _(cm) =	2.43
•	* 2/3 v Doeni máv =	2.30	1 '			


Paso 15A: Restricciones a la Irregularidad (Artículo 21)

No se permiten irregula	OK	
Ia _(final) =	1.00	
Ip _(final) =	1.00	
R _{L(final)} =	3.00	

Paso 16A. Determinación de Despiazamientos Laterales (Articulo					
Entrepiso	Desplazamiento (cm)				
Techo Escalera	0.629				
Azotea	0.097				
1	0.049				

iso 17A: Distorsión Admisible (Artículo 32)					▼		
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	0.629	0.531302	270.00	0.001968	0.004428	0.005	CUMPLE
Azotea	0.097	0.048315	270.00	0.000179	0.000403	0.005	CUMPLE
1	0.049	0.048970	270.00	0.000181	0.000408	0.005	CUMPLE

Der. Elás. x 0.75 x R

Paso 18A: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50		
S/2 ≥	* 0.006h/2 _(cm) =	2.43	S/2 _(cm) =	2.43
	* 2/3 x Despl.máx _(cm) =	0.42		

II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE TRANSVERSAL

Paso 13B: Análisis Dinámico (Artículo 29)

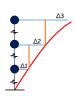
* Cálculo del espectro inelástico de pseudo aceleraciones - ETAB

Cálculo del factor de escal

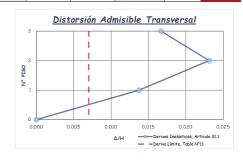
V _{T-ESTÁTICO (ton)}	19.562
V _{T-DINÁMICO (ton)}	13.391
% V _{T-DINÁMICO} / V _{T-ESTÁTICO}	68.454
V _{minima} (ton)	80
Factor de Amplificación:	1.168666

DISEÑO ESTRUCTURAL

ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	2.409
Azotea	1.658
1	0.618


Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)

Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	2.409	0.750596	270.00	0.002780	0.016680	0.007	RIGIDIZAR
Azotea	1.658	1.040371	270.00	0.003853	0.023119	0.007	RIGIDIZAR
1	0.618	0.618011	270.00	0.002289	0.013734	0.007	RIGIDIZAR

Paso 18B: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50			
S/2 ≥	* 0.006h/2 _(cm) =	2.43		S/2 _(cm) =	2.43
	* 2/3 x Δmáx _(cm) =	1.61	l '		

II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE LONGITUDINAL

Paso 13B: Análisis Dinámico (Artículo 29)

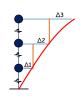
* Cálculo del espectro inelástico de pseudo aceleraciones - FTAF

Cálculo del factor de escal

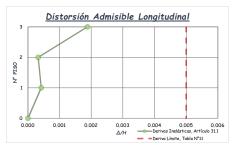
VL-ESTÁTICO (ton)	56.607
VL-DINÁMICO (ton)	46.970
% VL-DINÁMICO / VL-ESTÁTICO	82.976
V _{minima} (ton)	80
Factor de Amplificación:	NO AMPLIFICAR

DISEÑO ESTRUCTURAL

ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	0.315
Azotea	0.089
1	0.050


Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)

Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	0.315	0.225651	270.00	0.000836	0.001880	0.005	CUMPLE
Azotea	0.089	0.038914	270.00	0.000144	0.000324	0.005	CUMPLE
1	0.050	0.050392	270.00	0.000187	0.000420	0.005	CUMPLE

Paso 18B: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50		
S/2 ≥	* 0.006h/2 _(cm) =	2.43	S/2 _(cm) =	2.43
	* 2/3 x Δmáx _(cm) =	0.21		

FICHA DE GABINETE

III) ANALISIS DE MUROS PORTANTES

REQUISITOS ESTRUCTURALES MÍNIMOS (Capítulo 7)

REQUISITOS GENERALES (Artículo 19)

* Muro Portante (numeral 19.1)

a) Espesor Efectivo "t"

Z:	Zona 3	t≥h/20	t	Aparejo
h _{1(m)} =	2.40	0.1200		
h _{TÍPICO(m)} =	2.40	0.1200	0.13	SOGA
h _{techo escalera(m)} =	2.40	0.1200		

h-viga _(m) =	0.30
col. _(m) =	0.25

b) Esfuerzo Axial Máximo

Tipo de ladrillo:	King Kong Artesanal		
f'm _(kg/cm2) =	35		
0.15 f'm _(ton/m2) =	52.5		

. 0.0.6/	$\left[\left(h \right)^{2} \right]$
* $\sigma_m \le 0.2 f'm$	$\left[1-\left(\overline{35t}\right)\right]$

			1	° PISO	≤ 0.15 f′m	*	2°	PISO	≤ 0.15 f′m	*	Az	otea	≤ 0.15 f′m	*
MURO PORTANTE	L (m)	t (m)	Pm1 (Tn)	σm1 (ton/m2)	52.5	69.99	Pm2 (Tn)	σm2 (ton/m2)	52.5	69.99	Pm3 (Tn)	σm3 (ton/m2)	52.5	69.99
MP1	4.58	0.13	9.439	15.87	OK!		5.74	9.65	0	K!	0	0.00	0	K!
MP2	3.95	0.13	8.256	16.08	OK!		5.42	10.56	0	K!	3.374	6.57	0	K!
MP3	3.85	0.13	7.938	15.86	OK!		5	9.99	0	K!	O		0	K!
MP4	3.88	0.13	5.483	10.88	OK!		0		0	K!	O		0	K!
MP5	4.58	0.13	7.816	13.14	OK!		4.362	7.33	0	K!	0		0	K!
MP6	3.95	0.13	5.937	11.56	OK!	•	3.304	6.43	0	K!	Ö		0	K!
MP7	3.85	0.13	6.355	12.70	OK!	•	3.553	7.10	0	K!	Ö		0	K!
MP8	3.88	0.13	4.925	9.78	OK!		0	0.00	0	K!	0	0.00	0	K!

^{*}ERROR: Mejorar la calidad de la albañilería (f'm), aumentar el espesor del muro, transformarlo en concreto armado, o ver la manera de reducir la magnitud de la carga axial (Pm) por ejemplo, utilizando losas de techo macizas o aligeradas armadas en dos direcciones.

* Estructuración en Planta (numeral 19.2)

a) Muros a Reforzar

Ubicación de Muros: Muros Perimetrales de Cierre

V_{E1(ton)} = 56.607

	1° Nivel				
Muro Portante	Cortante	%	¿Reforzar?		
MP1	7.438	13.14	SI		
MP2	6.503	11.49	SI		
MP3	6.643	11.74	SI		
MP4	6.616	11.69	SI		
MP5	7.225	12.76	SI		
MP6	6.786	11.99	SI		
MP7	6.442	11.38	SI		
MP8	6.504	11.49	SI		

V _{E2(ton)} =		36.769			

Muro Portante	Cortante	%	¿Reforzar?
MP1	6.862	18.66	SI
MP2	5.223	14.20	SI
MP3	6.308	17.16	SI
MP5	5.908	16.07	SI
MP6	6.069	16.51	SI
MP7	5.42	14.74	SI

V _{EAzotea(ton)} =	7.755

Muro Portante	Cortante	%	¿Reforzar?
MP2	5.607	72.30	SI

b) Densidad Mínima de Muros Reforzados

Z:	0.35
U:	1.00
S:	1.15
N _(número de pisos) :	3.00

	ZUSN/56=	0.022
,		

Muro Portante	L (m)	t (m)	Area de Corte
MP1	4.58	0.13	0.595
MP2	3.95	0.13	0.514
MP3	3.85	0.13	0.501
MP4	3.88	0.13	0.504
MP5	4.58	0.13	0.595
MP6	3.95	0.13	0.514
MP7	3.85	0.13	0.501
MP8	3.88	0.13	0.504
Área de la Planta Típica	107.57	Σ	4.225

Densidad de Muros Reforzados	0.039	¡CORRECTA DENSIDAD DE MUROS REFORZADOS!
---------------------------------	-------	--

ANÁLISIS Y DISEÑO ESTRUCTURAL (Capítulo 8)

DISEÑO DE MUROS DE ALBAÑILERÍA (Artículo 26)

* Control de Fisuración (numeral 26.2)

Tipo de ladrillo:	King Kong Artesanal
v _{m (kg/cm2)} =	5.1

				Sismo Moderado (R=6)				Control de	e Fisuraci	ón 1° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	4.58	0.13	8.54	3.72	5.59	3.042	1.00	17.131	9.422	OK!
MP2	3.95	0.13	7.55	3.25	4.96	2.587	1.00	14.832	8.157	OK!
MP3	3.85	0.13	7.20	3.32	4.65	2.747	1.00	14.418	7.930	OK!
MP4	3.88	0.13	4.99	3.31	4.44	2.884	1.00	13.993	7.696	OK!
MP5	4.58	0.13	7.14	3.61	5.67	2.913	1.00	16.809	9.245	OK!
MP6	3.95	0.13	5.54	3.39	4.70	2.849	1.00	14.369	7.903	OK!
MP7	3.85	0.13	5.84	3.22	4.68	2.649	1.00	14.107	7.759	OK!
MP8	3.88	0.13	4.52	3.25	4.41	2.855	1.00	13.886	7.637	OK!

				Sismo Mod			Control de	e Fisuraci	ón 2° Nivel	
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	4.58	0.13	5.23	3.43	4.42	3.555	1.00	16.368	9.002	OK!
MP2	3.95	0.13	4.96	2.61	4.16	2.480	1.00	14.234	7.829	OK!
MP3	3.85	0.13	4.54	3.15	4.14	2.932	1.00	13.808	7.594	OK!
MP5	4.58	0.13	4.03	2.95	4.17	3.245	1.00	16.092	8.851	OK!
MP6	3.95	0.13	3.11	3.03	4.09	2.932	1.00	13.808	7.595	OK!
MP7	3.85	0.13	3.30	2.71	3.83	2.727	1.00	13.522	7.437	OK!

				Sismo Mod	erado (R=6)			Control d	e Fisuraci	ón Azotea
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	Ve ≤ 0.55 Vm?
MP2	3.95	0.13	3.09	2.80	4.37	2.534	1.00	13.804	7.592	OK!

* Verificación de la resistencia al corte del edificio (numeral 26.4)

				Sismo Sev	vero (R=3)	Resister	icia al cor	te 1° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	4.58	0.13	8.54	7.44	11.19	3.042	1.00	17.131
MP2	3.95	0.13	7.55	6.50	9.93	2.587	1.00	14.832
MP3	3.85	0.13	7.20	6.64	9.31	2.747	1.00	14.418
MP4	3.88	0.13	4.99	6.62	8.89	2.884	1.00	13.993
MP5	4.58	0.13	7.14	7.23	11.35	2.913	1.00	16.809
MP6	3.95	0.13	5.54	6.79	9.41	2.849	1.00	14.369
MP7	3.85	0.13	5.84	6.44	9.36	2.649	1.00	14.107
MP8	3.88	0.13	4.52	6.50	8.83	2.855	1.00	13.886
				•			Σ	119.545

				Sismo Sev	/ero (R=3)	Resister	ncia al cor	te 2° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	4.58	0.13	5.23	6.86	8.83	3.555	1.00	16.368
MP2	3.95	0.13	4.96	5.22	8.32	2.480	1.00	14.234
MP3	3.85	0.13	4.54	6.31	8.28	2.932	1.00	13.808
MP5	4.58	0.13	4.03	5.91	8.33	3.245	1.00	16.092
MP6	3.95	0.13	3.11	6.07	8.18	2.932	1.00	13.808
MP7	3.85	0.13	3.30	5.42	7.65	2.727	1.00	13.522
				-			Σ	87.832

				Sismo Se	vero (R=3)	Resiste	ncia al co	te Azotea
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP2	3.95	0.13	3.09	5.61	8.74	2.534	1.00	13.804
							Σ	13.804

	Sismo Sever	o (R=3)		
Nivel	∑V _{mi (ton)}	V _{Ei (ton)}	¿∑V _{mi} ≥ V _{Ei} ?	
Azotea	13.804	7.755	OK!	0
2° Nivel	87.832	36.769	OK!	0
1° Nivel	119.545	56.607	OK!	0

FICHA	A DE CAMPO
<u>Datos Generales :</u>	
CÓDIGO	: HU-3
UBICACIÓN	: HUANCAYO
AÑO DE CONSTRUCCIÓN	:MAYO 2016
NÚMERO DE PISOS	:3 PISOS + AZOTEA
USO FINAL	: VIVIENDA
Datos Técnicos :	
ALTURA TOTAL	: 10.95 m
PERFIL DE SUELO	: S2 - SUELO INTERMEDIO
SISTEMA ESTRUCTURA EJE LONG.	: ALBAÑILERÍA CONFINADA
SISTEMA ESTRUCTURA EJE TRAN.	: PÓRTICOS
ESPESOR DE MUROS PORTANTES	: 13 cm
TIPO DE LADRILLO EN MUROS	: ARTESANAL
TIPO DE LOSA Y DIRECCIÓN	: LA 1D - LONGITUDINAL

JUNTAS SÍSMICAS

Elaborado por: Cutisaca Antoni

NO

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE TRANSVERSAL

Paso 1: Factor de Zona Z (Artículo 10) Región (Dpto.): Junín Huancayo El Tambo 0.35

S2: Suelos Intermedios

Paso 3: Parámetros de Sitio S, T _P y T _L (Artículo 13)					
S:	1.15				
T _{P(seg)} =	0.60				
T _{L(seg)} =	2.00				

Paso 4: Factor de amplificación sísmica		
C _{T(inicial)} =	2.50	

_		
	h _{1(m)} =	2.85
	h _{T[PICO(m)} =	2.70
	h _{techo escalera(m)} =	2.70
	N° _{NIVELES} =	3
. ノ	h _{n(m)} =	10.95
	CT =	35
	T _{estimado(seg)} =	0.31

ETAPA 2: CARACTERIZACIÓN DEL EDIFICIO (Capítulo III)

Paso 5: Categoría de la edificación	n y el Factor de Uso (Artículo 15	(ز		
C-Edificaciones Comunes				
1.00				

Paso 6: Sistema Estructural (Artículos 16 y 17)		
S.E. permitidos: Cualquier sistema		
S.E. para analizar:	Pórticos	

Ro _{Tileiciali} =	8.00	

Paso 8: Factores de Irregularidad Ia, Ip (Artículo 20)

* Primera Verificación de Irregularidades				
Irregularidades Iniciales				
* Irregularidades en altura:				
2a) Irregularidad de resistencia - piso débil			1.00	
No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los		¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RESISTENCIA - PISO DÉBIL!		

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	M _i > 1.5M _{i+1}	M _i > 1.5M _{i-1}
Techo Escalera	2127.1403	No Aplica	No Aplica
Azotea	6541.8839	No Aplica	No Aplica
2	7143.5649	No Aplica	0.99
1	7199.8915	1.01	

4a) Irregularidad geométrica vertical No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

:LA ESTRUCTURA NO PRESENTA IRREGULARIDAD GEOMÉTRICA VERTICAL!

5a) Discontinuidad en los Sistemas Resistentes No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS RESISTENTES!

* Irregularidades en planta: 2p) Esquinas entrantes

		¡LA ESTRU	CTURA PRESENTA E	SQUINAS	0.90
C/A =	0.21	> 0.20?	Y/B =	0.6000	> 0.20?
C =	3	m	D =	3.60	m
n -	14.00	1	D -		

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	73.50	m2	AT(1X) = (B-y).esp.	0.65	m2
x =	1.90	m	AT(2X) = B.esp.	1.20	m2
y =	2.75	m	AT(1X)/ AT(2X)=	0.54	< 0.25?
xy =	5.23	m2			
xy / (AxB)-(CxD) =	0.07	> 0.50?			

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD DE DIAFRAGMA!

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE LONGITUDINAL

ETAPA 1: PELIGRO SISMICO (Capitulo II)			
Paso 1: Factor de Zona Z (Artículo 10)			
Región (Dpto.):	Junín		
Provincia: Huancayo			
Distrito: El Tambo			
	Zona 3		
Z:	0.35		

S2: Suelos Intermedios Paso 3: Parámetros de Sitio S, T_P y T_L (Artículo 13) 1.15 0.60 2.00

Paso 4: Factor de amplificación sísmica		
C _{L(inicial)} =	2.50	

	h _{1(m)} =	2.85
	h _{TÍPICO(m)} =	2.70
	h _{techo escalera(m)} =	2.70
	N° _{NIVELES} =	3
ノ	h _{n(m)} =	10.95
	CT =	60
	T _{estimado(seg)} =	0.18

Paso 5: Categoría de la edificación y	y el Factor de Uso (Artículo 15)			
C-Edificaciones Comunes				
U: 1.00				

aso 6: Sistema Estructural	(Artículo	os 16 y	17)	
i.E. permitidos:			Cualquier	si

S.E. permitidos:	Cualquier sistema	
S.E. para analizar:	Albañilería Confinada	

Ro _{Linkian} =	3.00

Paso 8: Factores de Irregularidad Ia, Ip (Artículo 20)

* Primera Verificación de Irregularidades				
Irregularidades Iniciales				
* Irregularidades en altura:	_			
2a) Irregularidad de resistencia - piso débil	:LA ESTRUCTURA NO PRESENTA	1.00		
No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los	IRRÉGULARIDAD DE RESISTENCIA - PISO DÉBIL!			

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	$M_i > 1.5M_{i+1}$	M _i > 1.5M _{i-1}		
Techo Escalera	2127.1403	No Aplica	No Aplica		
Azotea	6541.8839	No Aplica	No Aplica	l	
2	7143.5649	No Aplica	0.99	¡LA ESTRUCTURA NO PRESENTA	1.00
1	7199.8915	1.01		IRREGULARIDAD DE MASA!	

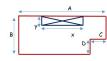
4a) Irregularidad geométrica vertical

No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD GEOMÉTRICA VERTICAL!	1.00

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.



* Irregularidades en planta:

		¡LA EST	RUCTURA PRESENTA ENTRANTES!	ESQUINAS	0.90
C/A =	0.21	> 0.20?	D/B =	0.6000	> 0.20?
C =	3	m	D =	3.6	m
A =	14.05	m	B =	6	m

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	73.50	m2	AT(1Y) = (A-x).esp.	2.43	m2
x =	1.90	m	AT(2Y) = Axesp.	2.81	m2
y =	2.75	m	AT(1Y)/ AT(2Y)=	0.86	< 0.25?
xy =	5.23	m2			
xy / (AxB)-(CxD) =	0.07	> 0.50?			

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD DE DIAFRAGMA!

4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes ortogonales.

1.00

0.90

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO PARALELOS!

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes ortogonales.

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO PARALELOS!

Ia_{L(inicial)} = 1.00 0.90

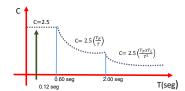
Paso 9: Restricciones a la Irregularidad (Artículo 21)

Restricciones: No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22)

R_((Inicial) = 2.70

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)


Paso 11: Modelos de Análisis (Artículo 25)

MODELADO EN E	Ι.			
* Coef. V _{L-basal-inicial.} C _(ETABS) = 0.372685			PRIMER	ANÁLISIS DEL MODELADO
* k,	1 0000	≥ 2? (no considerar)		

Verificación del Factor "C_L" - Modos de Vibración

Modo	Periodo (seg)	UY	Sum UY
1	1.204	0	0
2	0.388	0.00002	0.00002002
3	0.335	0.0033	0.0033
4	0.223	0.0436	0.0469
5	0.212	0.0069	0.0538
6	0.204	0.001	0.0548
7	0.188	0.1137	0.1685
8	0.146	0.7052	0.8737
9	0.126	0.0001	0.8738
10	0.076	0.0085	0.8823
11	0.056	0.0835	0.9658
12	0.049	0.0006	0.9664

-final(seg) =	0.124	* Cálculo de *	T según ETABS (numeral 28.4.2)
(finali) =	2.50	T>0.2TP> OK!	$\sum_{i=1}^{n} P_i \cdot d_i^2$
		T = 0.85	$2\pi \sqrt{\frac{\sum_{i=1}^{n} F_i \cdot d_i}{g \sum_{i=1}^{n} f_i \cdot d_i}}$

- verificación inicial de			I Factor Ro _{T(inicial)}	
V _{L-inicial(ton)} =	84.106			
Muros (ton-ETABS)	79.335		Albañilería Confinada	
Columnas (ton-ETABS)	4.77		El cortante que ton	
%Absorción de Muros	94.33	mayor al 7	170%	
			Ro _{T(final)} =	3

Ia_{T(inicial)} = Ip_{T(inicial)} =

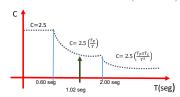
Paso 9: Restricciones a la Irregularidad (Artículo 21)

Restricciones:

No se permit No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sismica (Artículo 22)

| R_T(Inicial) = 7.20


ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)
Paso 11: Modelos de Análisis (Artículo 25)

MODELADO EN ETABS v.16.1.2			
* Coef. V _{T-basal-inicial.} C _(ETABS) =	0.139757		PRIMER ANÁLISIS DEL MODELADO
* k	1 0000	≥ 2? (no considerar	

ficación del Factor "C_T" - Modos de Vibración

Modo	Periodo (seg)	UX	Sum UX	RZ	Sum RZ
1	1.204	0.7992	0.7992	0.00004487	0.00004487
2	0.388	0.1221	0.9213	0.002	0.002
3	0.335	0.0006	0.9219	0.3363	0.3383
4	0.223	0.0098	0.9317	0.1385	0.4768
5	0.212	0.011	0.9427	0.1782	0.655
6	0.204	0.0347	0.9775	0.1087	0.7637
7	0.188	0.0003	0.9778	0.0842	0.8478
8	0.146	0.00002723	0.9778	0.0505	0.8983
9	0.126	0.0222	1	0.0004	0.8987
10	0.076	0.00001855	1	0.0829	0.9816
11	0.056	0	1	0.0026	0.9843
12	0.049	0.00001203	1	0.0128	0.997

T _{T-final(seg)} =	1.023		* Cálculo de T según ETABS (numeral 28.4.2)
C _{T(finall)} =	1.47	T>0.2TP> OK!	$\sum_{i=1}^{n} P_i \cdot d_i^2$
			$T = 0.85 \left(2\pi \sqrt{\frac{\sum_{i=1}^{n} F_i \cdot d_i}{g \sum_{i=1}^{n} f_i \cdot d_i}} \right)$

31.540	
1.999	
29.54	
6.338	· '
	1.999 29.54

i diucos		UK!
El cortante que to menor	man los Muros es al 20%	
Ro _{T(final)} =	8	

Irregularidades Finales * Irregularidades en altura: 1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Entrepiso Rigidez (ton/cm)		Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	2.5931		
Azotea	7.2689	2.803	
2	9.5592	1.315	
1	16.9142	1.769	2.613

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ!

1.00

2a) Irregularidad de Resistencia - Piso Débil	1.00
3a) Irregularidad de masa o peso	1.00
4a) Irregularidad geométrica vertical	1.00
5a) Discontinuidad en los Sistemas Resistentes	1.00

* Irregularidades en planta:

ip) irregulariuau rorsioliai y rors	p) irregularidad Torsional y Torsional Extrema				
Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva	> 0.5 Deriva
Littlepiso	A Desp. max. (cm)	···(Cm)	A D.M.////	Permisible	Permisible
Techo Escalera	2.21919822	270	0.0082	0.0035	EVALUAR
Azotea	2.44342988	270	0.0090	0.0035	EVALUAR
2	2.8158785	270	0.0104	0.0035	EVALUAR
1	1.89083269	2.85	0.6635	0.0035	FVALUAR

* Evaluación de la Irregularidad Torsional

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	9.33119452	9.16642202	1.0180
Azotea	7.14154729	7.11058911	1.0044
2	4.70585584	4.67102845	1.0075
1	1 89083269	1 86469038	1 0140

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD	1.00
TORSIONAL!	
2p) Esquinas entrantes	0.90
3p) Discontinuidad del Diafragma	1.00
4p) Sistemas no Paralelos	1.00

Ia _{T(final)} =	1.00	
In =	0.00	

	* Ver	ficación la o Ip diferentes en ambas direccio
Ia _(final) =	1.00	
Ip _(final) =	0.90	
D -	7.00	ECTRUCTURA IRRECUILAR

* Varificación C. /P.

Oluti	0.2033030	2 0.111 (IIO CONSIDERA)	1
* Coef. V _{T-basal final,} C _(ETABS) =	0.081937		SEGUNDO ANÁLISIS DEL MODELADO
* k	1 261700	> 22 (no considerar)	

 Paso 12: Estimación del Peso P (Artículo 26)

 C-Edificaciones Comunes
 100%CM+25%CV+25%CVT

Entrepiso	Wi _(ton)
Techo Escalera	20.860
Azotea	64.154
2	70.054
1	70.607
P _(top) =	225.675

Paso 13A: Análisis Estático (Artículo 28)

Irregularidades Finales

* Irregularidades en altura: 1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	43.2836		
Azotea	526.3552	12.161	
2	633.9765	1.204	
1	715.7213	1.129	1.784

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ!

2a) Irregularidad de Resistencia - Piso Débil

3a) Irregularidad de masa o peso

4a) Irregularidad geométrica vertical

5a) Discontinuidad en los Sistemas Resistentes

* Irregularidades en planta:

1p) Irregularidad Torsional y Torsional Extrema

Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	0.58928883	270	0.0022	0.0025	NO EVALUAR
Azotea	0.11780837	270	0.0004	0.0025	NO EVALUAR
2	0.14424833	270	0.0005	0.0025	NO EVALUAR
1	0.14637317	2.85	0.0514	0.0025	EVALUAR

* Evaluación de la Irregularidad Torsional

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	0.91179179	0.60657037	1.5032
Azotea	0.40842987	0.32020135	1.2755
2	0.2906215	0.23036784	1.2616
1	0.14637317	0.11751203	1.2456

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD TORSIONAI

l .	
2p) Esquinas entrantes	0.
3p) Discontinuidad del Diafragma	

4p) Sistemas no Paralelos

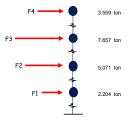
Ia _{L(final)} =	1.00
Ip _{Liffinati} =	0.90

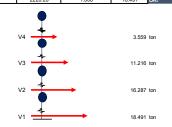
* Verificación la o Ip diferentes en ambas direccio			
a _(final) =	1.00		
p _{rfinali} =	0.90		

2.70 ESTRUCTURA IRREGULAR

/R _L =	0.925925926	≤ 0.11? (no considera
-------------------	-------------	-----------------------

* Coef. V _{L-basal-final,} C _(ETABS) =	0.372685	SEGUND	O ANÁLISIS DEL MODELADO
e I.	4 000000	> 00 ()	


Paso 12: Estimación del Peso P (Artículo 26) C-Edificaciones Comunes 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	20.860
Azotea	64.154
2	70.054
1	70.607
D -	005.075

Paso 13A: Análisis Estático (Artículo 28)

* Calculo de la fuerza cortante en la base (numeral 28.2)			
V _{L(ton)} =	84.106		

20.86 3.559 3.559 Techo Escalera 20.48 427.31 0.192 Azotea 64.15 8.25 5.55 14.33 919.42 0.414 7.657 11.216 608.85 70.05 8.69 0.274 5.071 16.287 70.61 2.85 3.75 264.68 2.204 0.119 18.491 2220.26 18 491 OKI

ETAPA 4A: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)

Paso 14A: Revisión de la Hipótesis del Análisis

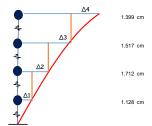
Estructuras de muros portantes de Albañilería confinada de no mas	OK
de 15m de altura, aun cuando cea irregular	

Ro _{T(inicial)} =	8.00
SISTEMA ESTRUCURAL:	Pórticos
V _{T(ton)} =	18.491
Muros (ton-ETABS)	1.17
Columnas (ton-ETABS)	17.32
%Absorción de Muros	6.33

Pórticos	OK!
El cortante que toman los Muros es	
menor al 20%	

Paso 15A: Restricciones a la Irregularidad (Artículo 21)

Book 47A: Distorajón Adminible (Artículo 22)

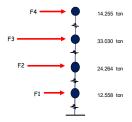

No se permiten irregu	OK	
Ia _(final) =		
Ip _(final) =	0.90	
R _{T/fload} =	7 20	

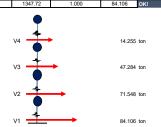
Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	5.756
Azotea	4.357
2	2.840
1	1.128

Der. Elás. x 0.85 x R

Paso 17A: Distorsion Admisible (Articulo 32)					· ·		
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	5.756	1.399	270.00	0.005182	0.031716	0.007	RIGIDIZAR
Azotea	4.357	1.517	270.00	0.005619	0.034386	0.007	RIGIDIZAR
2	2.840	1.712	270.00	0.006341	0.038807	0.007	RIGIDIZAR
1	1 128	1 128	285.00	0.003957	0.024215	0.007	RIGIDIZAR




Paso 18A: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50			
S/2 ≥	* 0.006h/2 _(cm) =	3.29		S/2 _(cm) =	3.84
	* 2/3 x Despl.máx _(cm) =	3.84	1 '		

* Dietribución on la altura do la fuorza ejemica (numeral 28.3)

Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi) ^k	α_i	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	20.860	10.95	10.95	228.42	0.169	14.255	14.255
Azotea	64.154	8.25	8.25	529.27	0.393	33.030	47.284
2	70.054	5.55	5.55	388.80	0.288	24.264	71.548
1	70.607	2.85	2.85	201.23	0.149	12.558	84.106
				1017.70	1 000	04.400	

ETAPA 4A: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)

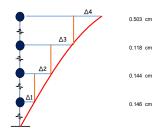
Paso 14A: Revisión de la Hipótesis del Análisis

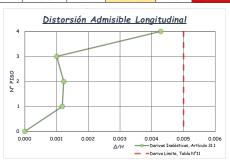
Estructuras de muros portantes de Albañilería confinada de no mas de 15m de altura, aun cuando sea irregular

	* Verificad
3.00	
Albağilaria Canfinada	

Ro _{Linicial)} =	3.00		
SISTEMA ESTRUCURAL:	Albañilería Confinada	Ì	
V _{L(ton)} =	84.11	İ	
Muros (ton-ETABS)	79.34		Albañilería Confinada
Columnas (ton-ETABS)	4.77	ı 	El cortante que toman los Muros e
%Absorción de Muros	94.33	i '	mayor al 70%

Paso 15A: Restricciones a la Irregularidad (Artículo 21)


No se permiten irregula	ок	
Ia _(final) =		
Ip _(final) =	0.90	
R _{L(final)} =	2.70	


Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

-aso real determinación de desprazamientos caterales (Articulo			
Entrepiso	Desplazamiento (cm)		
Techo Escalera	0.912		
Azotea	0.408		
2	0.291		
1	0.146		

17A: Distorsión Admisible (Artículo 32)

Paso 17A: Distorsión Admisible (Art	ículo 32)		▼				
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
4	0.912	0.503	270.00	0.001864	0.004279	0.005	CUMPLE
3	0.408	0.118	270.00	0.000436	0.001001	0.005	CUMPLE
2	0.291	0.144	270.00	0.000534	0.001226	0.005	CUMPLE
1	0.146	0.146	285.00	0.000514	0.001179	0.005	CUMPLE

Der. Elás. x 0.85 x R

Paso 18A: Separación entre Edificios (Artículo 33)

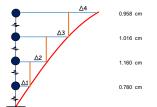
	* mínimo _(cm) =	1.50			
\$/2 ≥	* 0.006h/2 _(cm) =	3.29	S/2 _(cm) =	3.29	
	* 2/3 x Despl.máx _(cm) =	0.61			

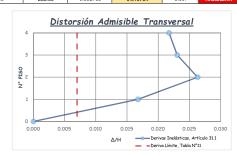
II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE TRANSVERSAL

Paso 13B: Análisis Dinámico (Artículo 29)

V _{T-ESTÁTICO (ton)}	18.491
V _{T-DINÁMICO (ton)}	13.313
% V _{T-DINÁMICO} / V _{T-ESTÁTICO}	71.997
V _{minima (ton)}	90
Factor de Amplificación:	1.250049

DISEÑO ESTRUCTURAL


ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	3.915
Azotea	2.957
2	1.940
1	0.780

Der. Elás. x 0.85 x R

Paso 176: Distorsion Admisi	DIE (ARTICUIO 32)		•				
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	3.915	0.958	270.00	0.003550	0.021723	0.007	RIGIDIZAR
Azotea	2.957	1.016	270.00	0.003764	0.023034	0.007	RIGIDIZAR
2	1.940	1.160	270.00	0.004297	0.026298	0.007	RIGIDIZAR
1	0.780	0.780	285.00	0.002738	0.016754	0.007	RIGIDIZAR

Paso 18B: Separación entre Edificios (Artículo 33)

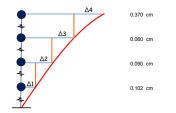
	* mínimo _(cm) =	1.50	١,		
S/2 ≥	* 0.006h/2 _(cm) =	3.29		S/2 _(cm) =	3.29
	* 2/3 x Δmáx _(cm) =	2.61	·		

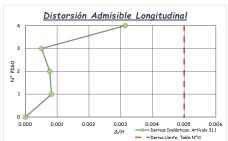
II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE LONGITUDINAL

Paso 13B: Análisis Dinámico (Artículo 29)

VL.ESTÁTICO (ton)	84.106
VL.DINÁMICO (ton)	62.406
% VL.DINÁMICO / VL. ESTÁTICO	74.199
V _{minima (ton)}	90
Factor de Amplificación:	1.212951

ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)


Entrepiso	Desplazamiento (cm)
Techo Escalera	0.621
Azotea	0.252
2	0.192
1	0.102

Paso 17B: Distorsión Admisible (Artículo 32)

Der. Elás. x 0.85 x R

do 115. Biotololi Admono (Attouto 02)										
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación			
Techo Escalera	0.621	0.370	270.00	0.001370	0.003143	0.005	CUMPLE			
Azotea	0.252	0.060	270.00	0.000221	0.000508	0.005	CUMPLE			
2	0.192	0.090	270.00	0.000333	0.000764	0.005	CUMPLE			
1	0.102	0.102	285.00	0.000357	0.000820	0.005	CUMPLE			

Paso 18B: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50		
\$/2 ≥	* 0.006h/2 _(cm) =	3.29	S/2 _(cm) =	3.29
	* 2/3 x Δmáx _(cm) =	0.41		

FICHA DE GABINETE III) ANALISIS DE MUROS PORTANTES REQUISITOS ESTRUCTURALES MÍNIMOS (Capítulo 7) **REQUISITOS GENERALES (Artículo 19)** * Muro Portante (numeral 19.1) a) Espesor Efectivo "t" 0.35 t≥h/20 0.40 t Aparejo h-viga_(m)= **h**_{1(m)}= 2.45 0.1225 0.25 h_{TÍPICO(m)}= 2.30 0.1150 0.13 SOGA h_{techo escalera(m)}= 2.30 0.1150 b) Esfuerzo Axial Máximo Tipo de ladrillo: King Kong Artesanal $* \sigma_m \le 0.2 f'm \left[1 - \left(\frac{h}{35t} \right)^2 \right]$ f'm _(kg/cm2) = 35 0.15 f'm _(ton/m2) = 52.5

			1	° PISO	≤ 0.15 f′m	*	2°	PISO	≤0.15 f′m	*	3°	PISO	≤ 0.15 f'm	*	Az	otea	≤ 0.15 f′m	*
MURO PORTANTE	L (m)	t (m)	Pm1 (Tn)	σm1 (ton/m2)	52.5	69.99	Pm2 (Tn)	σm2 (ton/m2)	52.5	69.99	Pm3 (Tn)	σm3 (ton/m2)	52.5	69.99	Pm4 (Tn)	σm4 (ton/m2)	52.5	69.99
MP1	3.73	0.13	8.536	17.63	OK!		5.902	12.19	0	K!	3.344	6.91	0	K!	Ö		0	K!
MP2	2.70	0.13	6.503	18.53	OK!		4.483	12.77	0	K!	2.469	7.03	0	K!	Ö	0.00	0	K!
MP3	3.00	0.13	7.535	19.32	OK!		5.357	13.74	0	K!	3.307	8.48	0	K!	0	0.00	0	K!
MP4	4.03	0.13	8.842	16.90	OK!		6.712	12.83	0	K!	4.73	9.04	0	K!	2.864	5.47	0	K!
MP5	3.73	0.13	10.322	21.32	OK!		7.772	16.05	0	K!	5.321	10.99	0	K!	2.829	5.84	0	K!
MP6	2.70	0.13	7.143	20.35	OK!		5.213	14.85	0	K!	3.348	9.54	0	K!	1.72	4.90	0	K!
MP7	3.13	0.13	7.143	17.58	OK!		5.086	12.52	0	K!	3.067	7.55	0	K!	Ö	0.00	0	K!

^{*}ERROR: Mejorar la calidad de la albañilería (fm), aumentar el espesor del muro, transformarlo en concreto armado, o ver la manera de reducir la magnitud de la carga axial (Pm) por ejemplo, utilizando losas de techo macizas o aligeradas armadas en dos direcciones.

* Estructuración en Planta (numeral 19.2)								
a) Muros a Reforzar								
Ubicación de Muros: Muros Perimetrales de Cierre								
V _{E1(ton)} =	84.106		•					

	1° Nivel										
Muro Portante	Cortante	%	¿Reforzar?								
MP1	9.903	11.77	SI								
MP2	7.989	9.50	NO								
MP3	8.883	10.56	SI								
MP4	10.534	12.52	SI								
MP5	16.019	19.05	SI								
MP6	12.667	15.06	SI								
MP7	13.34	15.86	SI								

V _{E2(ton)} =	71.548		
Muro Portante	Cortante	%	¿Reforzar?
MP1	7.954	11.12	SI
MP2	7.23	10.11	SI
MP3	8.107	11.33	SI
MP4	8.043	11.24	SI
MP5	13.437	18.78	SI
MP6	11.424	15.97	SI
MP7	11.298	15.79	SI

		_	
/ _{E3(ton)} =	47.284		
Muro Portante	Cortante	%	¿Reforzar?
MP1	5.004	10.58	SI
MP2	5.202	11.00	SI
MP3	6.033	12.76	SI
MP4	4.209	8.90	NO
MP5	8.851	18.72	SI
MP6	7.856	16.61	SI
MP7	7.875	16.65	SI

V _{EAzotea(ton)} =	14.255		
Muro Portante	Cortante	%	¿Reforzar?
MP4	4.345	30.48	SI
MP5	3.378	23.70	SI
MP6	3.397	23.83	SI

b) Densidad Mínima de Muros Reforzados								
Z:	0.35							
U:	1.00							
S:	1.15							
N _(número de pisos) :	4.00							

ZUSN/56= 0.029

Muro Portante	L (m)	t (m)	Area de Corte				
MP1	3.73	0.13	0.484				
MP2	2.70	0.13	0.351				
MP3	3.00	0.13	0.390				
MP4	4.03	0.13	0.523				
MP5	3.73	0.13	0.484				
MP6	2.70	0.13	0.351				
MP7	3.13	0.13	0.406				
Área de la Planta Típica	100.00	Σ	2.990				

Densidad de Muros Reforzados	0.030	¡CORRECTA DENSIDAD DE MUROS REFORZADOS!
---------------------------------	-------	--

ANÁLISIS Y DISEÑO ESTRUCTURAL (Capítulo 8)

DISEÑO DE MUROS DE ALBAÑILERÍA (Artículo 26)

* Control de Fisuración (numeral 26.2)

Tipo de ladrillo:	King Kong Artesanal
v _{m (kg/cm2)} =	5.1

	Sismo Mod	erado (R=6)			Control de	Fisuraci	ón 1° Nivel			
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.73	0.13	7.80	4.95	8.04	2.294	1.00	14.143	7.779	OK!
MP2	2.70	0.13	5.97	3.99	5.83	1.849	1.00	10.324	5.678	OK!
MP3	3.00	0.13	6.96	4.44	6.50	2.049	1.00	11.546	6.351	OK!
MP4	4.03	0.13	8.28	5.27	8.92	2.377	1.00	15.247	8.386	OK!
MP5	3.73	0.13	9.54	8.01	13.33	2.238	1.00	14.542	7.998	FISURAS POR CORTE
MP6	2.70	0.13	6.61	6.33	9.51	1.798	1.00	10.471	5.759	FISURAS POR CORTE
MP7	3 13	0.13	6.58	6 67	10 65	1.958	1 00	11.873	6.530	FISURAS POR CORTE

				Sismo Mod	Control de Fisuración 2º Nivel					
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.73	0.13	5.41	3.98	5.72	2.588	1.00	13.593	7.476	OK!
MP2	2.70	0.13	4.13	3.62	4.94	1.976	1.00	9.899	5.445	OK!
MP3	3.00	0.13	4.95	4.05	5.51	2.206	1.00	11.084	6.096	OK!
MP4	4.03	0.13	6.26	4.02	6.14	2.634	1.00	14.783	8.131	OK!
MP5	3.73	0.13	7.21	6.72	9.95	2.516	1.00	14.007	7.704	OK!
MP6	2.70	0.13	4.85	5.71	8.04	1.918	1.00	10.065	5.536	FISURAS POR CORTE
MP7	3.13	0.13	4.71	5.65	8.04	2.196	1.00	11.442	6.293	OK!

				Sismo Mod			Control de	e Fisuraci	ón 3° Nivel	
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.73	0.13	3.10	2.50	3.45	2.702	1.00	13.062	7.184	OK!
MP2	2.70	0.13	2.29	2.60	3.52	1.995	1.00	9.477	5.212	OK!
MP3	3.00	0.13	3.07	3.02	3.99	2.270	1.00	10.651	5.858	OK!
MP4	4.03	0.13	4.40	2.10	3.42	2.475	1.00	14.354	7.895	OK!
MP5	3.73	0.13	4.99	4.43	6.28	2.627	1.00	13.496	7.423	OK!
MP6	2.70	0.13	3.15	3.93	5.52	1.921	1.00	9.676	5.322	OK!
MP7	3.13	0.13	2.88	3.94	5.28	2.330	1.00	11.021	6.061	OK!

	Sismo Moderado (R=6)					Control de Fisuración Azotea				
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	Ve ≤ 0.55 Vm?
MP4	4.03	0.13	2.62	2.17	3.33	2.624	1.00	13.946	7.670	OK!
MP5	3.73	0.13	2.72	1.69	2.31	2.719	1.00	12.974	7.136	OK!
MP6	2.70	0.13	1.69	1.70	2.40	1.914	1.00	9.340	5.137	OK!

* Verificación de la resistencia al corte del edificio (numeral 26.4)

				Sismo Severo (R=3) Resistencia al corte 1º Nive		te 1° Nivel		
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.73	0.13	7.80	9.90	16.08	2.294	1.00	14.143
MP2	2.70	0.13	5.97	7.99	11.66	1.849	1.00	10.324
MP3	3.00	0.13	6.96	8.88	13.01	2.049	1.00	11.546
MP4	4.03	0.13	8.28	10.53	17.84	2.377	1.00	15.247
MP5	3.73	0.13	9.54	16.02	26.67	2.238	1.00	14.542
MP6	2.70	0.13	6.61	12.67	19.02	1.798	1.00	10.471
MP7	3.13	0.13	6.58	13.34	21.29	1.958	1.00	11.873
							Σ	88.147

				Sismo Severo (R=3) Resistencia al corte 2° Niv		te 2° Nivel		
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.73	0.13	5.41	7.95	11.45	2.588	1.00	13.593
MP2	2.70	0.13	4.13	7.23	9.88	1.976	1.00	9.899
MP3	3.00	0.13	4.95	8.11	11.03	2.206	1.00	11.084
MP4	4.03	0.13	6.26	8.04	12.29	2.634	1.00	14.783
MP5	3.73	0.13	7.21	13.44	19.89	2.516	1.00	14.007
MP6	2.70	0.13	4.85	11.42	16.08	1.918	1.00	10.065
MP7	3.13	0.13	4.71	11.30	16.07	2.196	1.00	11.442
		-					Σ	84.875

				Sismo Severo (R=3) Resistencia al corte 3° Nive		te 3° Nivel		
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.73	0.13	3.10	5.00	6.90	2.702	1.00	13.062
MP2	2.70	0.13	2.29	5.20	7.04	1.995	1.00	9.477
MP3	3.00	0.13	3.07	6.03	7.97	2.270	1.00	10.651
MP4	4.03	0.13	4.40	4.21	6.85	2.475	1.00	14.354
MP5	3.73	0.13	4.99	8.85	12.55	2.627	1.00	13.496
MP6	2.70	0.13	3.15	7.86	11.04	1.921	1.00	9.676
MP7	3.13	0.13	2.88	7.88	10.56	2.330	1.00	11.021
							Σ	81.736

				Sismo Se	vero (R=3)	Resister	ncia al co	rte Azotea
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP4	4.03	0.13	2.62	4.35	6.66	2.624	1.00	13.946
MP5	3.73	0.13	2.72	3.38	4.63	2.719	1.00	12.974
MP6	2.70	0.13	1.69	3.40	4.79	1.914	1.00	9.340
		-					Σ	36.260

	Sismo Sever	o (R=3)	
Nivel	∑V _{mi (ton)}	V _{Ei (ton)}	¿∑V _{mi} ≥ V _{Ei} ?
Azotea	36.260	14.255	OK!
3° Nivel	81.736	47.284	OK!
2° Nivel	84.875	71.548	OK!
1° Nivel	88.147	84.106	OK!

FICHA	A DE CAMPO
Datos Generales :	
CÓDIGO	: ET-5
UBICACIÓN	: EL TAMBO
AÑO DE CONSTRUCCIÓN	:MARZO 2017
NÚMERO DE PISOS	: 4 PISOS + AZOTEA
USO FINAL	: VIVIENDA
Datos Técnicos :	
ALTURA TOTAL	:14.25 m
PERFIL DE SUELO	: S2 - SUELO INTERMEDIO
SISTEMA ESTRUCTURA EJE LONG.	: ALBAÑILERÍA CONFINADA
SISTEMA ESTRUCTURA EJE TRAN.	: PÓRTICOS
ESPESOR DE MUROS PORTANTES	: 13 cm
TIPO DE LADRILLO EN MUROS	: ARTESANAL
TIPO DE LOSA Y DIRECCIÓN	: LA 1D - TRANSVERSAL

JUNTAS SÍSMICAS

Elaborado por: Cutisaca Antoni

NO

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE TRANSVERSAL

ETAPA 1: PELIGRO SÍSMICO (Capítulo II)

Paso 1: Factor de Zona Z (Artículo 10)

Región (Dpto.):	Junín
Provincia:	Huancayo
Distrito:	El Tambo
	Zona 3
7.	0.35

Paso 2: Perfil de Suelo (Artículo 12)

S2: Suelos Intermedios

D--- 0: D---(---t--- d--Obt-- 0: T--- T---(4--(---t--40)

Paso 3: Parametros de Sitio S, T _P y T _L (Articulo 13)	
S:	1.15
T _{P(seg)} =	0.60
T _{L(seq)} =	2.00

Paso 4: Factor de amplificación sísmica

2.50

h _{1(m)} =	3.35
h _{TIPICO(m)} =	2.70
h _{techo escalera(m)} =	2.80
N° _{NIVELES} =	4.00
h _{n(m)} =	14.25
CT =	35.00
T _{estimado(seg)} =	0.41

ETAPA 2: CARACTERIZACIÓN DEL EDIFICIO (Capítulo III)

Paso 5: Categoría de la edificació	on y el Factor de Uso (Artículo	15
C-Edificacione	s Comunes	
II.	4.00	i

Paso 6: Sistema Estructural (Artículos 16 y 17)				
S.E. permitidos:	Cualquier sistema			
0 Fll	Distinct			

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Ro_{T(inicial)} =

Paso 8: Factores de Irregularidad Ia, Ip (Artículo 20)

	* Primera Verificación de Irregularidades
	Irregularidades Iniciales
ı	* Irregularidades en altura:

2a) Irregularidad de resistencia - piso débil

No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de

ILA ESTRUCTURA NO PRESENTA GULARIDAD DE RESISTENCIA - PISO DÉBIL

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	$M_i > 1.5M_{i+1}$	M _i > 1.5M _{i-1}
Techo Escalera	1868.7516	N. A.	N. A.
Azotea	8626.1409	N. A.	N. A.
3	10250.3783	N. A.	1.00
2	10250.3783	1.00	1.06
1	9630 8164	0.94	

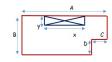
4a) Irregularidad geométrica vertical

No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD GEOMÉTRICA VERTICAL!

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.


¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS RESISTENTESI

* Irregularidades en planta:

¡LA ESTRUCTURA NO PRESENTA ESQUINAS ENTRANTESI					
C/A =	0.06	> 0.20?	Y/B =	0.4459	> 0.20?
C =	0.80	m	D =	4.04	m
A =	13.65	m	B =	9.06	m

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	120.44	m2	AT(1X) = (B-y).esp.	1.33	m2
x =	2.90	m	AT(2X) = B.esp.	1.81	m2
y =	2.40	m	AT(1X)/ AT(2X)=	0.74	< 0.25?
xy =	6.96	m2			
xv / (AxB)-(CxD) =	0.06	> 0.50?			

¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD DE DIAFRAGMA!

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE LONGITUDINAL

ETAPA 1: PELIGRO SÍSMICO (Capítulo II)

Faso I. Factor de Zona Z (Articulo	10)
Región (Dpto.):	Junín
Provincia:	Huancayo
Distrito:	El Tambo
	Zona 3
7.	0.25

Paso 2: Perfil de Suelo (Artículo 12) S2: Suelos Intermedios

Paso 3: Parámetros de Sitio S, T _P y	T _L (Artículo 13)
3:	1.15
B(con) =	0.60

Paso 4: Factor de amplificación sísmica

C _{L(inicial)} =	2.50

- (h _{1(m)} =	3.35	
	h _{TÍPICO(m)} =	2.70	
	h _{techo escalera(m)} =	2.80	
	N° _{NIVELES} =	4.00	
ノ	h _{n(m)} =	14.25	
	CT =	60.00	
_ \	T _{estimado(seg)} =	0.24	

TAF	Ά	2:	CARA	AC1	EF	RIZA	CIÓN	DEL	EDIF	CIO	(Ca	pítul	0	III)	

so 5: Categoría de la edificación	y el Factor de Uso (Artículo 15)				
C-Edificaciones Comunes					
1.00					

aso 6: Sistema Estructural (Artículos 16 y 17)						
S.E. permitidos:	Cualquier sistema					
E nara analizar:	Albañilería Confinada					

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Ro_{L(inicial)} =

Paso 8: Factores de Irregularidad Ia, Ip (Artículo 20)

Primera Verificación de Irregularidades			
Irregularidades Iniciales			
Irregularidades en altura:			

2a) Irregularidad de resistencia - piso débil

No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los

ILA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RESISTENCIA - PISO DÉBIL!

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE MASA!

¡LA ESTRUCTURA NO PRESENTA

IRREGULARIDAD GEOMÉTRICA VERTICAL!

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	M _i > 1.5M _{i+1}	M _i > 1.5M _{i-1}
Techo Escalera	1868.7516	N. A.	N. A.
Azotea	8626.1409	N. A.	N. A.
3	10250.3783	N. A.	1.00
2	10250.3783	1.00	1.06
1	9630 8164	0.94	

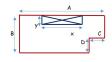
4a) Irregularidad geométrica vertical

No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.

RESISTENTES!


¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS

* Irregularidades en planta: 2p) Esquinas entrantes

		¡LA ESTR	UCTURA NO PRESENT ENTRANTES!	A ESQUINAS	1.00
C/A =	0.06	> 0.20?	D/B =	0.4459	> 0.20?
C =	0.8	m	D =	4.04	m
A =	13.65	m	B =	9.06	m

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	120.44	m2	AT(1Y) = (A-x).esp.	2.15	m2
x =	2.90	m	AT(2Y) = Axesp.	2.73	m2
y =	2.40	m	AT(1Y)/ AT(2Y)=	0.79	< 0.25?
xy =	6.96	m2			_
xy / (AxB)-(CxD) =	0.06	> 0.50?			

ILA ESTRUCTURA NO PRESENTA DISCONTINUIDAD DE DIAFRAGMA!

4p) Sistemas no Paralelos

Se da cuando se

se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes	¡LA ESTRUCTURA NO PRESENTA SISTEMAS N	10
ortogonales.	PARALELOS!	П

la _{T (inicial)} =	1.00
Ip _{T (inicial)} =	1.00

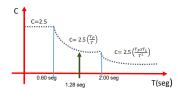
Paso 9: Restricciones a la Irregularidad (Artículo 21)

Restricciones:

No se permitei No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22) 8.00

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)


Paso 11: Modelos de Análisis (Ar	tículo 25)		
MODELADO EN E	TABS v.16.1.2		
* Coef. V _{T-basal-inicial,} C _(ETABS) =	0.125781		PRIMER ANÁLISIS DEL MODELADO
* k _{T-(exp. de distrib. en altura-inicial)} =	1.000000	≥ 2? (no considerar)	

/erificación del Factor "C_T" - Modos de Vibración

Modo	Periodo (seg)	UX	Sum UX	RZ	Sum RZ
1	1.511	0.8463	0.8463	0.0003	0.0003
2	0.466	0.0995	0.9457	0.000009995	0.0003
3	0.275	0.0243	0.97	0.091	0.0912
4	0.267	0.0044	0.9744	0.7876	0.8789
5	0.236	0	0.9744	0.0004	0.8793
6	0.192	0.0008	0.9753	0.0067	0.8859
7	0.181	0.019	0.9943	0.0003	0.8863
8	0.119	0.0056	0.9999	0.0001	0.8863
9	0.091	0.00004196	0.9999	0.082	0.9683
10	0.076	0.00003802	1	0.012	0.9803
11	0.062	0.000001024	1	0.0035	0.9839
12	0.051	0.000009783	1	0.0131	0.9969
13	0.041	5.715E-07	1	0.0006	0.9975
14	0.04	0.000003116	1	0.0025	1
15	0.032	0	1	8.462E-07	1

T _{T-final(seg)} =	1.284	
C =	1 17	

* Cálculo de T según ETABS (numeral 28.4.2) $T = 0.85 \left(2\pi \sqrt{\frac{\sum_{i=1}^n P_i \cdot d_i^2}{g\sum_{i=1}^n f_i \cdot d_i}}\right)$

V _{T-inicial(ton)} =	50.112
Muros (ton-ETABS)	2.381
Columnas (ton-ETABS)	47.73
%Absorción de Muros	4.751

Pórt	OK!	
El cortante que toman los Muros es menor al 20%		
Ro _{Tifficall} =	8	1

Irregularidades Finales

* Irregularidades en altura: 1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	3.0829		
Azotea	10.4490	3.389	
3	12.6172	1.208	
2	14.1532	1.122	1.624
1	18.4704	1.305	1.489

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE

RIGIDEZ!

2a) Irregularidad de Resistencia - Piso Débil 3a) Irregularidad de masa o peso 4a) Irregularidad geométrica vertical 5a) Discontinuidad en los Sistemas Resistentes

4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes ortogonales.

a _{L(inicial)} =	1.00
P _{L(inicial)} =	1.00

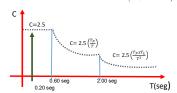
Paso 9: Restricciones a la Irregularidad (Artículo 21)

Restricciones:

No se perm No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22)

3.00


ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV) Paso 11: Modelos de Análisis (Artículo 25)

MODELADO EN ETABS v.16.1.2			
* Coef. V _{L-basal-inicial,} C _(ETABS) =	0.335417		PRIMER ANÁLISIS DEL MODELADO
* k _{L-(exp. de distrib. en altura-inicial)} =	1.000000	≥ 2? (no considerar)	

Verificación del Factor "C_L" - Modos de Vibración

Modo	Periodo (seg)	UY	Sum UY
1	1.511	0.0002	0.0002
2	0.466	0.00004859	0.0002
3	0.275	0.0012	0.0014
4	0.267	0.0002	0.0016
5	0.236	0.5806	0.5822
6	0.192	0.3011	0.8833
7	0.181	0.0024	0.8857
8	0.119	0	0.8857
9	0.091	0.0088	0.8946
10	0.076	0.0569	0.9515
11	0.062	0.0319	0.9834
12	0.051	0.0007	0.9841
13	0.041	0.0106	0.9947
14	0.04	0.0025	0.9972
15	0.032	0.0028	1

ing) =	0.201	* Cálculo de T según ETABS (numeral 28.4.2)
,=	2.50	$\left\langle \begin{array}{cc} \nabla^n & p_{rr} d^2 \end{array} \right\rangle$
		$T = 0.85 \left(2\pi \sqrt{\frac{\sum_{i=1}^{n} P_i \cdot d_i^2}{g \sum_{i=1}^{n} f_i \cdot d_i}} \right)$

* Verificación Inicial del Factor "Ro _{L(Inic}		
V _{L-inicial(ton)} =	133.633	
Muros (ton-ETABS)	115.912	
Columnas (ton-ETABS)	17.72	
%Absorción de Muros	86.74	,

Albañilería Confinada		OK!
El cortante que toman los Muros es mayor al 70%		
Ro _{T(final)} = 3		1

Irregularidades Finales

* Irregularidades en altura: 1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	31.8422		
Azotea	531.2489	16.684	
3	669.4141	1.260	
2	744.8459	1.113	1.813
1	702.1064	0.943	1.083

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ!

2a) Irregularidad de Resistencia - Piso Débil 3a) Irregularidad de masa o peso 4a) Irregularidad geométrica vertical

5a) Discontinuidad en los Sistemas Resistentes

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO PARALELOS!

* Irregularidades en planta:

1p) Irregularidad Torsional y Torsional Extrema

Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	1.40453471	280	0.0050	0.0035	EVALUAR
Azotea	1.99596213	270	0.0074	0.0035	EVALUAR
3	2.83636549	270	0.0105	0.0035	EVALUAR
2	3.2606815	270	0.0121	0.0035	EVALUAR
- 1	2 79770604	3 35	0.8333	0.0035	EVALUAD

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	12.09264102	12.028335	1.0053
Azotea	10.85278241	10.58996747	1.0248
3	8.86353808	8.64598814	1.0252
2	6.03686077	5.88459034	1.0259
- 1	2 78770604	2 71311075	1 0275

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD

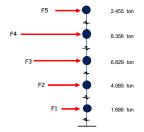
• • • • • • • • • • • • • • • • • • • •	1.00
TORSIONAL!	
2p) Esquinas entrantes	1.00
3p) Discontinuidad del Diafragma	1.00
4p) Sistemas no Paralelos	1.00

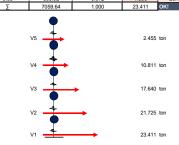
Ia _{T(final)} =	1.00
In =	1.00

1.00 1.00

ESTRUCTURA REGULAR 8.00

$C_T/R_T =$	0.145988243	≤ 0.11? (no considerar)		
* Coef. V _{T-basal final,} C _(ETABS) =	0.058760		SEGUND	IO ANÁLISIS DEL MODELADO
* k _{T-(exp. de distrib. en altura-final)} =	1.392175	≥ 2? (no considerar)		


Paso 12: Estimación del Peso P (Artículo 26) C-Edificaciones Comunes 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	18.326
Azotea	84.594
3	100.522
2	100.522
1	94.446
Pan =	398 410

Paso 13A: Análisis Estático (Artículo 28)

 Calculo de la fuerza cortante en la 	base	(numeral 28.2)
V _{T(ton)} =		23.411

Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi) ^k	α_{i}	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	18.33	14.25	40.39	740.26	0.105	2.455	2.455
Azotea	84.59	11.45	29.79	2519.88	0.357	8.356	10.811
3	100.52	8.75	20.49	2059.21	0.292	6.829	17.640
2	100.52	6.05	12.26	1231.97	0.175	4.085	21.725
1	94.45	3.35	5.38	508.32	0.072	1.686	23.411

* Irregularidades en planta:

1p) irregularidad Forsional y Forsi	onal Extrema				
Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	0.61430356	280	0.0022	0.0025	NO EVALUAR
Azotea	0.10529796	270	0.0004	0.0025	NO EVALUAR
3	0.14764806	270	0.0005	0.0035	NO EVALUAR
2	0.17339403	270	0.0006	0.0025	NO EVALUAR
1	0.20522382	3.35	0.0613	0.0025	EVALUAR

* Evaluación de la Irregularidad Torsion	ial		
Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	1.20368776	0.93221157	1.2912
Azotea	0.6314038	0.59197546	1.0666
3	0.52612704	0.48996171	1.0738
2	0.37853607	0.3511572	1.0780
1	0.20522382	0.19043456	1 0777

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD TORSIONAL!

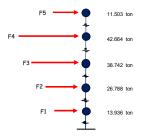
2p) Esquinas entrantes	
3p) Discontinuidad del Diafragma	
4p) Sistemas no Paralelos	

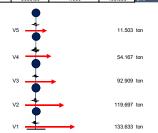
-	1.00
	4.00

1.00

IP(final) =	1.00	
R _{L(final)} =	3.00	ESTRUCTURA REGULAR

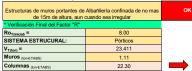
C _L /R _L =	0.833333333	≤ 0.11? (no considerar)	
* Coef. V _{L-basal-final,} C _(ETABS) =	0.335417		SEGUNDO ANÁLISIS DEL MODELADO
* k _{L-(exp. de distrib. en altura-final)} =	1.000000	≥ 2? (no considerar)	


Paso 12: Estimación del Peso P (Artículo 26) C-Edificaciones Comunes 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	18.326
Azotea	84.594
3	100.522
2	100.522
1	94.446
P _(top) =	398.410

Paso 13A: Análisis Estático (Artículo 28)

* Cálculo de la fuerza cortante en la ba	ise (numeral 28.2)
V _{L(ton)} =	133.633


Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi) ^k	αι	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	18.326	14.25	14.25	261.15	0.086	11.503	11.503
Azotea	84.594	11.45	11.45	968.60	0.319	42.664	54.167
3	100.522	8.75	8.75	879.57	0.290	38.742	92.909
2	100.522	6.05	6.05	608.16	0.200	26.788	119.697
1	94.446	3.35	3.35	316.39	0.104	13.936	133.633
			7	3033.86	1 000	133 633	OKI

ETAPA 4A: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)

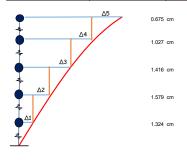
Paso 14A: Revisión de la Hipótesis del Análisis

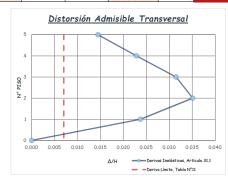
4.75

Pórticos	OK!
El cortante que toman los Muros es menor al 20%	

Paso 15A: Restricciones a la Irregularidad (Artículo 21)

%Absorción de Muros


No se permiten irregularidades extremas				
la _(final) =	1.00			
Ip _(final) =	1.00			
R _{T(final)} =	8.00	Ī		


Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	6.021
Azotea	5.346
3	4.319
2	2.903
1	1 324

Der. Elás. x 0.75 x R

Paso 17A: Distorsión Admisible	(Artículo 32)				Der. Elas. x 0.75 x R ▼		
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	6.021	0.674753	280.00	0.002410	0.014459	0.007	RIGIDIZAR
Azotea	5.346	1.027204	270.00	0.003804	0.022827	0.007	RIGIDIZAR
3	4.319	1.415667	270.00	0.005243	0.031459	0.007	RIGIDIZAR
2	2.903	1.579095	270.00	0.005849	0.035091	0.007	RIGIDIZAR
1	1.324	1.323784	335.00	0.003952	0.023710	0.007	RIGIDIZAR

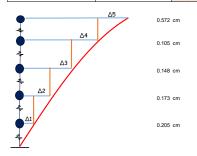
Paso 18A: Separación entre Edificios (Artículo 33)

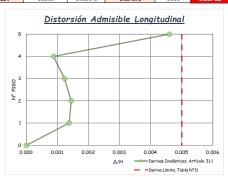
	* mínimo _(cm) =	1.50			
S/2 ≥	* 0.006h/2 _(cm) =	4.28		S/2 _(cm) =	4.28
	* 2/3 x Despl.máx _(cm) =	4.01	· '		

ETAPA 4A: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)

Paso 14A: Revisión de la Hipótesis del Análisis

Page 15A: Poetricciones a la Irregularidad (Artículo 21)


No se permiten irregula		OK
Ia _(final) =	1.00	
Ip _(final) =	1.00	
R _{L(final)} =	3.00	


Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	1.204
Azotea	0.631
3	0.526
2	0.379
1	0.205

Der. Elás. x 0.75 x R

Paso 17A: Distorsión Admisible (A	rtículo 32)				Der. Elas. x 0.75 x R ▼		
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	1.204	0.572284	280.00	0.002044	0.004599	0.005	CUMPLE
Azotea	0.631	0.105277	270.00	0.000390	0.000877	0.005	CUMPLE
3	0.526	0.147591	270.00	0.000547	0.001230	0.005	CUMPLE
2	0.379	0.173312	270.00	0.000642	0.001444	0.005	CUMPLE
1	0.205	0.205224	335.00	0.000613	0.001378	0.005	CUMPLE

Paso 18A: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50	١.		
S/2 ≥	* 0.006h/2 _(cm) =	4.28		S/2 _(cm) =	4.28
	* 2/3 x Despl.máx _(cm) =	0.80	1 '		

II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE TRANSVERSAL

Paso 13B: Análisis Dinámico (Artículo 29)

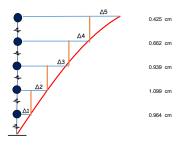
* Cálculo del espectro inelástico de pseudo aceleraciones

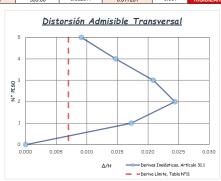
Cálculo del factor de escala

V _{T-ESTÁTICO (ton)}	23.411
V _{T-DINÁMICO (ton)}	17.717
% V _{T-DINÁMICO} / V _{T-ESTÁTICO}	75.678
V _{minima} (ton)	80
Factor de Amplificación:	1.057109

DISEÑO ESTRUCTURAL

ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)


Entrepiso	Desplazamiento (cm)
Techo Escalera	4.088
Azotea	3.663
3	3.001
2	2.062
1	0.964

Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)

Faso 17B. Distorsion Admissible (Articulo 32)							
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	4.088	0.424769	280.00	0.001517	0.009102	0.007	RIGIDIZAR
Azotea	3.663	0.661751	270.00	0.002451	0.014706	0.007	RIGIDIZAR
3	3.001	0.938735	270.00	0.003477	0.020861	0.007	RIGIDIZAR
2	2.062	1.098703	270.00	0.004069	0.024416	0.007	RIGIDIZAR
1	0.964	0.963731	335 00	0.002877	0.017261	0.007	RIGIDIZAR

Paso 18B: Separación entre Edificios (Artículo 33)

. . .

	* minimo _(cm) =	1.50			
S/2 ≥	* 0.006h/2 _(cm) =	4.28		S/2 _(cm) =	4.28
	* 2/3 x Δmáx _(cm) =	2.73	·		

II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE LONGITUDINAL

Paso 13B: Análisis Dinámico (Artículo 29)

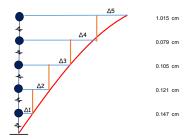
Cálculo del espectro inelástico de pseudo aceleracione

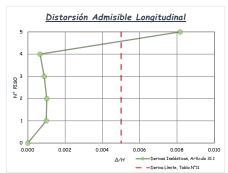
Cálculo del factor de escala

VL. ESTÁTICO (ton)	133.633
VL-DINÁMICO (ton)	94.798
% VL _{DINÁMICO} / VL _{ESTÁTICO}	70.939
V _{minima} (ton)	80
Factor de Amplificación:	1.127728

DISEÑO ESTRUCTURAL

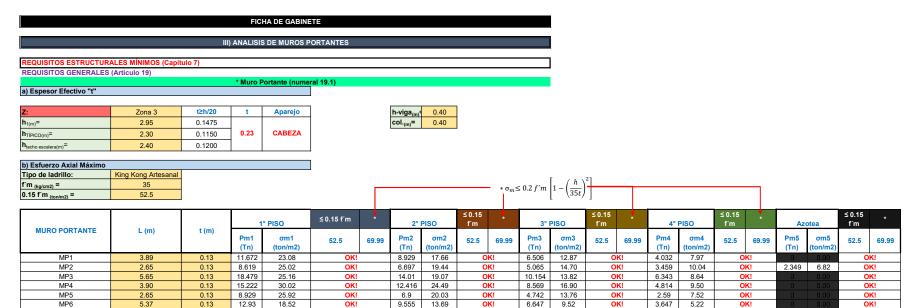
ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)


Desplazamiento (cm)
1.467
0.452
0.373
0.268
0.147

Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)


Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	1.467	1.015363	280.00	0.003626	0.008159	0.005	RIGIDIZAR
Azotea	0.452	0.078612	270.00	0.000291	0.000655	0.005	CUMPLE
3	0.373	0.105123	270.00	0.000389	0.000876	0.005	CUMPLE
2	0.268	0.121271	270.00	0.000449	0.001011	0.005	CUMPLE
1	0.147	0.146970	335.00	0.000439	0.000987	0.005	CUMPLE

Paso 18B: Separación entre Edificios (Artículo 33)

	* minimo _(cm) =	1.50				
S/2 ≥	* 0.006h/2 _(cm) =	4.28		>	S/2 _(cm) =	4.28
	* 2/3 x Δmáx _(cm) =	0.98	·			

^{*}ERROR: Mejorar la calidad de la albañilería (fm), aumentar el espesor del muro, transformarlo en concreto armado, o ver la manera de reducir la magnitud de la carga axial (Pm) por ejemplo, utilizando losas de techo macizas o aligeradas armadas en dos direcciones.

* Estructuración en Planta (numeral 19.2)					
a) Muros a Reforzar					
Ubicación de Muros: Muros Perimetrales de Cierre					
V _{E1(ton)} =	133.633				

	1° Nivel					
Muro Portante	Cortante	%	¿Reforzar?			
MP1	16.827	12.59	SI			
MP2	12.529	9.38	NO			
MP3	25.319	18.95	SI			
MP4	27.433	20.53	SI			
MP5	14.494	10.85	SI			
MP6	19.31	14.45	SI			

V _{E2(ton)} =	119.697						
	2° Nivel						
Muro Portante	Cortante	%	¿Reforzar?				
MP1	14.44	12.06	SI				
MP2	11.261	9.41	NO				
MP3	22.705	18.97	SI				
MP4	24.317	20.32	SI				
MP5	13.265	11.08	SI				
MP6	16.533	13.81	SI				

П

V _{E3(ton)} =	92.909						
	3° Nivel						
Muro Portante	Cortante	%	¿Reforzar?				
MP1	11.122	11.97	SI				
MP2	8.595	9.25	NO				
MP3	18.263	19.66	SI				
MP4	18.65	20.07	SI				
MP5	10.244	11.03	SI				
MP6	12.181	13.11	SI				

V _{E4(ton)} =	54.167		
	4° Nivel		
Muro Portante	Cortante	%	¿Reforzar?
MP1	6.968	12.86	SI
MP2	4.755	8.78	NO
MP3	12.117	22.37	SI
MP4	10.896	20.12	SI
MP5	6.146	11.35	SI
MP6	6.546	12.08	SI

V _{EAzotea(ton)} =	11.503		
	Azotea		
Muro Portante	Cortante	%	¿Reforzar?
MP2	4.391	38.17	SI

b) Densidad Mínima de Muros Reforzados					
Z:	0.35	,			
U:	1.00		ZUSN/56=		
S:	1.15	,			
N _(número de pisos) :	5.00				

Muro Portante	L (m)	t (m)	Area de Corte
MP1	3.89	0.13	0.506
MP2	2.65	0.13	0.345
MP3	5.65	0.13	0.735
MP4	3.90	0.13	0.507
MP5	2.65	0.13	0.345
MP6	5.37	0.13	0.698
Área de la Planta Típica	115.92	Σ	3.134

Densidad de Muros Reforzados	0.027	CAMBIAR ESPESOR DE ALGUNOS MUROS O AGREGAR PLACAS DE CONCRETO ARMADO
---------------------------------	-------	--

ANÁLISIS Y DISEÑO ESTRUCTURAL (Capítulo 8)

DISEÑO DE MUROS DE ALBAÑILERÍA (Artículo 26)

* Control de Fisuración (numeral 26.2)

0.036

Tipo de ladrillo:	King Kong Artesanal
v _{m (kg/cm2)} =	5.1

								Control de	e Fisuraci	ón 1° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.89	0.13	10.43	8.41	15.79	2.073	1.00	15.295	8.412	FISURAS POR CORTE
MP2	2.65	0.13	7.71	6.26	10.94	1.518	1.00	10.559	5.807	FISURAS POR CORTE
MP3	5.65	0.13	16.50	12.66	25.17	2.842	1.00	22.525	12.389	FISURAS POR CORTE
MP4	3.90	0.13	13.74	13.72	26.98	1.983	1.00	16.088	8.849	FISURAS POR CORTE
MP5	2.65	0.13	7.98	7.25	12.58	1.526	1.00	10.620	5.841	FISURAS POR CORTE
MP6	5.37	0.13	11.49	9.66	18.06	2.870	1.00	20.444	11.244	OK!

								Control de	Fisuraci	ón 2° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.89	0.13	7.94	7.22	10.52	2.670	1.00	14.721	8.097	OK!
MP2	2.65	0.13	5.94	5.63	7.89	1.892	1.00	10.152	5.583	FISURAS POR CORTE
MP3	5.65	0.13	12.46	11.35	17.19	3.731	1.00	21.595	11.877	OK!
MP4	3.90	0.13	11.07	12.16	18.31	2.590	1.00	15.476	8.512	FISURAS POR CORTE
MP5	2.65	0.13	6.13	6.63	9.19	1.912	1.00	10.194	5.606	FISURAS POR CORTE
MP6	5.37	0.13	8.48	8.27	12.02	3.693	1.00	19.753	10.864	OK!

				Sismo Mod			Control de	Fisuraci	ón 3° Nivel	
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	3.89	0.13	5.77	5.56	7.73	2.799	1.00	14.223	7.823	OK!
MP2	2.65	0.13	4.46	4.30	6.02	1.891	1.00	9.810	5.396	OK!
MP3	5.65	0.13	9.02	9.13	13.01	3.966	1.00	20.803	11.442	OK!
MP4	3.90	0.13	7.68	9.33	13.38	2.718	1.00	14.695	8.082	FISURAS POR CORTE
MP5	2.65	0.13	4.22	5.12	7.02	1.932	1.00	9.756	5.366	OK!
MP6	5.37	0.13	5.93	6.09	8.52	3.837	1.00	19.165	10.540	OK!

				Sismo Mod			Control de	Fisuraci	ón 4° Nivel	
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	?Ve ≤ 0.55 Vm
MP1	3.89	0.13	3.57	3.48	4.53	2.993	1.00	13.716	7.544	OK!
MP2	2.65	0.13	2.99	2.38	3.46	1.822	1.00	9.473	5.210	OK!
MP3	5.65	0.13	5.61	6.06	7.91	4.330	1.00	20.021	11.011	OK!
MP4	3.90	0.13	4.36	5.45	7.47	2.845	1.00	13.932	7.663	OK!
MP5	2.65	0.13	2.33	3.07	4.17	1.953	1.00	9.320	5.126	OK!
MP6	5.37	0.13	3.29	3.27	4.44	3.958	1.00	18.559	10.207	OK!

				Sismo Mod	erado (R=6)			Control d	e Fisuraci	ón Azotea
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP2	2.65	0.13	1.96	2.20	3.29	1.766	1.00	9.235	5.079	OK!

* Verificación de la resistencia al corte del edificio (numeral 26.4)

				Sismo Sev	vero (R=3)	Resister	ncia al cor	te 1° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.89	0.13	10.43	16.83	31.58	2.073	1.00	15.295
MP2	2.65	0.13	7.71	12.53	21.88	1.518	1.00	10.559
MP3	5.65	0.13	16.50	25.32	50.33	2.842	1.00	22.525
MP4	3.90	0.13	13.74	27.43	53.95	1.983	1.00	16.088
MP5	2.65	0.13	7.98	14.49	25.16	1.526	1.00	10.620
MP6	5.37	0.13	11.49	19.31	36.13	2.870	1.00	20.444
				-			Σ	95.531

				Sismo Se	vero (R=3)	Resister	ıcia al cor	te 2° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.89	0.13	7.94	14.44	21.03	2.670	1.00	14.721
MP2	2.65	0.13	5.94	11.26	15.78	1.892	1.00	10.152
MP3	5.65	0.13	12.46	22.71	34.38	3.731	1.00	21.595
MP4	3.90	0.13	11.07	24.32	36.61	2.590	1.00	15.476
MP5	2.65	0.13	6.13	13.27	18.38	1.912	1.00	10.194
MP6	5.37	0.13	8.48	16.53	24.04	3.693	1.00	19.753
	-						Σ	91.889

				Sismo Sev	vero (R=3)	Resister	ncia al cor	te 3° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.89	0.13	5.77	11.12	15.45	2.799	1.00	14.223
MP2	2.65	0.13	4.46	8.60	12.05	1.891	1.00	9.810
MP3	5.65	0.13	9.02	18.26	26.02	3.966	1.00	20.803
MP4	3.90	0.13	7.68	18.65	26.76	2.718	1.00	14.695
MP5	2.65	0.13	4.22	10.24	14.05	1.932	1.00	9.756
MP6	5.37	0.13	5.93	12.18	17.05	3.837	1.00	19.165
							Σ	88.453

				Sismo Se	vero (R=3)	Resister	icia al cor	te 4° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	3.89	0.13	3.57	6.97	9.06	2.993	1.00	13.716
MP2	2.65	0.13	2.99	4.76	6.91	1.822	1.00	9.473
MP3	5.65	0.13	5.61	12.12	15.81	4.330	1.00	20.021
MP4	3.90	0.13	4.36	10.90	14.94	2.845	1.00	13.932
MP5	2.65	0.13	2.33	6.15	8.34	1.953	1.00	9.320
MP6	5.37	0.13	3.29	6.55	8.88	3.958	1.00	18.559
	-	-					Σ	85.021

				Sismo Sev	vero (R=3)	Resister	ncia al coi	rte Azotea
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP2	2.65	0.13	1.96	4.39	6.59	1.766	1.00	9.235
							Σ	9.235

	Sismo Sever	o (R=3)	
Nivel	∑V _{mi (ton)}	V _{Ei (ton)}	¿∑V _{mi} ≥ V _{Ei} ?
Azotea	9.235	11.503	INADECUADA RESISTENCIA Y RIGIDEZ
4° Nivel	85.021	54.167	OK!
3° Nivel	88.453	92.909	INADECUADA RESISTENCIA Y RIGIDEZ
2° Nivel	91.889	119.697	INADECUADA RESISTENCIA Y RIGIDEZ
1° Nivel	95.531	133.633	INADECUADA RESISTENCIA Y RIGIDEZ

FICHA DE CAMPO				
<u>Datos Generales :</u>				
CÓDIGO	: CH-4			
UBICACIÓN	: CHILCA			
AÑO DE CONSTRUCCIÓN	: MAYO 2017			
NÚMERO DE PISOS	: 5 PISOS + AZOTEA			
USO FINAL	: VIVIENDA			
Datos Técnicos :				
ALTURA TOTAL	: 17.50 m			
PERFIL DE SUELO	: S2 - SUELO INTERMEDIO			
SISTEMA ESTRUCTURA EJE LONG.	: ALBAÑILERÍA CONFINADA			
SISTEMA ESTRUCTURA EJE TRAN.	: PÓRTICOS			
ESPESOR DE MUROS PORTANTES	:13 cm			
TIPO DE LADRILLO EN MUROS	: ARTESANAL			
TIPO DE LOSA Y DIRECCIÓN	: LA 1D - TRANSVERSAL			

JUNTAS SÍSMICAS

Elaborado por: Cutisaca Antoni

NO

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE TRANSVERSAL

Paso 1: Factor de Zona Z (Artículo 10)

Región (Dpto.):	Junín
Provincia:	Huancayo
Distrito:	Chilca
	Zona 3
7.	0.35

Paso 2: Perfil de Suelo (Artículo 12)

S2: Suelos Intermedios

Paso 3: Parametros de Sitio S, T _P y T _L (Articulo 13)			
S:		1.15	
T _{P(seg)} =		0.60	
T _{1 (sen)} =		2.00	

Paso 4: Factor de amplificación sísmica

Trinician =	2.50

	h _{1(m)} =	3.55
	h _{TIPICO(m)} =	2.80
	h _{techo escalera(m)} =	2.75
	N° _{NIVELES} =	5
. ノ	h _{n(m)} =	17.50
	CT =	35
	T =	0.50

Paso 5: Categoría de la edificación y el Factor de Uso (Artículo 15) C-Edificaciones Comunes

Paso 6: Sistema Estructural (Artículos 16 y 17)

S.E. permitidos:	Cualquier sistema		
S.E. para analizar:	Pórticos		

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Paso 8: Factores de Irregularidad la, Ip (Artículo 20)

Irregularidades Iniciales * Irregularidades en altura:

2a) Irregularidad de resistencia - piso débil

No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los pisos.

ILA ESTRUCTURA NO PRESENTA ULARIDAD DE RESISTENCIA - PISO DÉBIL

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	M _i > 1.5M _{i+1}	M _i > 1.5M _{i-1}
Techo Escalera	1102.3736	No Aplica	No Aplica
Azotea	6006.9296	No Aplica	No Aplica
4	6856.3536	No Aplica	1.00
3	6856.3536	1.00	1.00
2	6856.3536	1.00	0.97
1	7093 4063	1.03	

4a) Irregularidad geométrica vertical

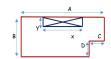
No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

¡LA ESTRUCTURA NO PRESENTA EGULARIDAD GEOMÉTRICA VERTICAL!

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE MASA!

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.


¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS RESISTENTES!

* Irregularidades en planta:

	¡LA ESTRUCTURA NO PRESENTA ESQUINAS			1.00	
C/A =	0.00	> 0.20?	Y/B =	0.00	> 0.20?
C =	0.00	m	D =	0.00	m
A =	8.5	m	B =	7.8	m

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	66.30	m2	AT(1X) = (B-y).esp.	1.14	m2
x =	2.65	m	AT(2X) = B.esp.	1.56	m2
y =	2.10	m	AT(1X)/ AT(2X)=	0.73	< 0.25?
xy =	5.57	m2			
xv / (AxB)-(CxD) =	0.08	> 0.50?	1		

:LA ESTRUCTURA NO PRESENTA

ENTRANTES!

FICHA DE GABINETE

I) ANÁLISIS ESTÁTICO O DE FUERZAS EQUIVALENTES - EJE LONGITUDINAL

Región (Dpto.):	Junín
Provincia:	Huancayo
Distrito:	Chilca
	Zona 3
7.	0.35

Paso 2: Perfil de Suelo (Artículo 12) S2: Suelos Intermedios

Paso 3: Parámetros de Sitio S. T. v T. (Artículo 13)

S:	1.15
T _{P(seg)} =	0.60
T _{L(seg)} =	2.00

Paso	4:	Factor	de	amplificación sísmica	

C _{I (inicial)} =	2.50
- Clinicali	2.00

	_		
		h _{1(m)} =	3.55
		h _{TIPICO(m)} =	2.80
		h _{techo escalera(m)} =	2.75
		N° _{NVELES} =	5
J		h _{n(m)} =	17.50
١		CT =	60
		T _{estimado(seo)} =	0.29

Paso 5: Categoría de la edificación y el Factor de Uso (Artículo 15

1.0

aso 6: Sistema Estructural	(Artici	1105 16	y 17)
E permitidos:			Cual	guier sistem

S.E. permitidos:	Cualquier sistema
S.E. para analizar:	Albañilería Confinada

Paso 7: Coeficiente Básico de Reducción de Fuerzas Sísmicas (Artículo 18)

Paso 8: Factores de Irregularidad la, Ip (Artículo 20)

Irregularidades Iniciales

* Irregularidades en altura:

No se presenta irregularidad de resistencia porque las secciones no varían en ninguno de los pisos.

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RESISTENCIA - PISO DÉBIL!

3a) Irregularidad de masa o peso

Entrepiso	Masa (ton.m/s2)	$M_i > 1.5M_{i+1}$	M _i > 1.5M _{i-1}
Techo Escalera	1102.3736	No Aplica	No Aplica
Azotea	6006.9296	No Aplica	No Aplica
4	6856.3536	No Aplica	1.00
3	6856.3536	1.00	1.00
2	6856.3536	1.00	0.97
1	7002 4062	1.03	

4a) Irregularidad geométrica vertical

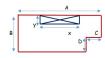
No se presenta irregularidad geométrica vertical debido a que se tienen pisos típicos.

¡LA ESTRUCTURA NO PRESENTA REGULARIDAD GEOMÉTRICA VERTICAL!

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE MASA!

5a) Discontinuidad en los Sistemas Resistentes

No se presenta discontinuidad en los Sistemas Resistentes ya que tanto pórticos como muros estructurales parten desde el primer nivel hasta el último.


¡LA ESTRUCTURA NO PRESENTA DISCONTINUIDAD EN LOS SISTEMAS
RESISTENTES!

* Irregularidades en planta:

A =	8.5	m	B =	7.8	m
C =	0	m	D =	0	m
C/A =	0.00	> 0.20?	D/B =	0.0000	> 0.20?
		¡LA ESTRUC	TURA NO PRESENTA	A ESQUINAS	1.00
		1	ENTRANTES!		

3p) Discontinuidad del Diafragma

(AxB)-(CxD) =	66.30	m2	AT(1Y) = (A-x).esp.	1.17	m2
x =	2.65	m	AT(2Y) = Axesp.	1.70	m2
y =	2.10	m	AT(1Y)/ AT(2Y)=	0.69	< 0.25?
xy =	5.57	m2			
xy / (AxB)-(CxD) =	0.08	> 0.50?			

¡LA ESTRUCTURA NO PRESENTA

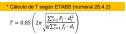
4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes

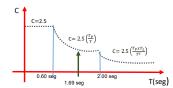
Ia _{T(inicial)} =	1.00	
Ip _{Triniciali} =	1.00	

Paso	q.	Restricciones	a	la	Irrogularidad	(Artículo	21

No se permiten irregularidades extremas


Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22) R_Titalcian = 8.00

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV) Paso 11: Modelos de Análisis (Artículo 25)


MODELADO EN I	ETABS v.16.1.2	Ι.				
* Coef. V _{T-basal-inicial.} C _(ETABS) =	0.125781		PRIMER ANÁLISIS DEL MODELADO		ANÁLISIS DEL MODELADO	
* k	1,0000	> 22 (no	considerar	١		

Modo	Periodo (seg)	UX	Sum UX	RZ	Sum RZ
1	1.988	0.7996	0.7996	0.00000354	0.00000354
2	0.635	0.0933	0.893	0.000007033	0.00001057
3	0.402	0.0312	0.9242	0.0001	0.0001
4	0.336	0.0009	0.9251	0.7789	0.779
5	0.305	0.0255	0.9507	0.0345	0.8135
6	0.258	0.0267	0.9774	0.00003398	0.8136
7	0.231	0.0011	0.9785	0.011	0.8245
8	0.203	0.0034	0.9819	0.0258	0.8503
9	0.16	0.0105	0.9924	8.683E-07	0.8503
10	0.111	0.0023	0.9947	0.000007313	0.8503
11	0.104	0.0001	0.9947	0.1216	0.972
12	0.089	0.0043	0.9991	0.0013	0.9733
13	0.059	0.000005205	0.9991	0.0204	0.9937
14	0.051	0.0007	0.9998	0.0002	0.9939
15	0.043	8.176E-07	0.9998	0.0051	0.999
16	0.037	0.0002	1	0.00004265	0.999
17	0.036	0	1	0.001	1
18	0.031	0.00003306	1	0.000008963	1

T _{T-final(seg)} =	1.690	∢
c -	0.80	ı

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO PARALELOS!

		* Verificaci
V _{T-inicial(ton)} =	42.891	
Muros (ton-ETABS)	1.810	١.
Columnas (ton-ETABS)	41.08	
%Absorción de Muros	4.220	,

Pórt	icos	OK!
El cortante que toman los Muros es menor al 20%		
Ro =	8	

Irregularidades Finales
* Irregularidades en altura:

1a) Irregularidad de Rigidez - Piso Blando

Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})
Techo Escalera	0.9697		
Azotea	5.8961	6.080	
4	7.4721	1.267	
3	7.9776	1.068	1.669
2	8.7512	1.097	1.230
1	11.3091	1.292	1.402

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ!

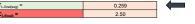
2a) Irregularidad de Resistencia - Piso Débil 3a) Irregularidad de masa o peso 4a) Irregularidad geométrica vertical 5a) Discontinuidad en los Sistemas Resistentes

4p) Sistemas no Paralelos

Se da cuando se tienen ejes inclinados, terrenos en cuchilla en planta. Se tienen ejes ortogonales.

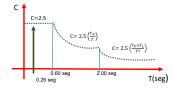
la _{L(inicial)} =	1.00
Ip _{I (inicial)} =	1.00

Paso 9: Restricciones a la Irregularidad (Artículo 21)


Restricciones: No se permite No se permiten irregularidades extremas

Paso 10: Coeficiente de Reducción de la Fuerza Sísmica (Artículo 22)

ETAPA 3: ANÁLISIS ESTRUCTURAL (Capítulo IV)
Paso 11: Modelos de Análisis (Artículo 25)


MODELADO EN E	IABS V.16.1.2		
* Coef. V _{L-basal-inicial} . C _(ETABS) =	0.335417	PRIMER	R ANÁLISIS DEL MODELADO
* k _{L-(exp. de distrib. en altura-inicial)} =	1.0000	≥ 2? (no considerar)	

Modo	Periodo (seg)	UY	Sum UY
1	1.988	0.0302	0.0302
2	0.635	0.0038	0.034
3	0.402	0.0012	0.0352
4	0.336	0.0223	0.0575
5	0.305	0.6719	0.7294
6	0.258	0.0006	0.73
7	0.231	0.0455	0.7755
8	0.203	0.0838	0.8593
9	0.16	0.0004	0.8597
10	0.111	0.0001	0.8598
11	0.104	0.0022	0.8619
12	0.089	0.1133	0.9752
13	0.059	0.0002	0.9754
14	0.051	0.0189	0.9943
15	0.043	0.0001	0.9944
16	0.037	0.0047	0.9991
17	0.036	0.00001027	0.9991
18	0.031	0.0009	1

¡LA ESTRUCTURA NO PRESENTA SISTEMAS NO PARALELOS!

	•	Verificación
V _{L-inicial(ton)} =	114.375	
Muros (ton-ETABS)	97.677	
Columnas (ton-ETABS)	16.70	
%Absorción de Muros	85.40	1 '

_		
Albañilería (Confinada	OK!
El cortante que toman los Muros es mayor al 70%		
Ro _{T(final)} =	3	l

Irregularidades Finales

* Irregularidades en altura:

1a) Irregularidad de Rigidez - Piso Blando

Ta) irregularidad de Rigidez - Fiso Biando				
Entrepiso	Rigidez (ton/cm)	K _i < 0.7 K _{i+1}	Ki < 0.8 Prom(K _{i+1,2,3})	
Techo Escalera	5.9918			
Azotea	93.3765	15.584		
4	124.6086	1.334		
3	138.1344	1.109	1.850	
2	154.0890	1.116	1.298	
1	181 1865	1 176	1 304	

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD DE RIGIDEZ!

2a) Irregularidad de Resistencia - Piso Débil	1.00
3a) Irregularidad de masa o peso	1.00
4a) Irregularidad geométrica vertical	1.00
5a) Discontinuidad en los Sistemas Resistentes	1.00

* Irregularidades en planta:
1p) Irregularidad Torsional y Torsional Extrema

Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	2.66040073	275	0.0097	0.0035	EVALUAR
Azotea	2.46605564	280	0.0088	0.0035	EVALUAR
4	3.41478396	280	0.0122	0.0035	EVALUAR
3	4.25020531	280	0.0152	0.0035	EVALUAR
2	4.5390304	280	0.0162	0.0035	EVALUAR
1	3.80441862	3.55	1.0717	0.0035	EVALUAR

* Evaluación de la Irregularidad Torsional

Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	21.05146044	21.03847721	1.0006
Azotea	18.47449393	18.37988597	1.0051
4	16.00843829	15.93458757	1.0046
3	12.59365433	12.54070822	1.0042
2	8.34344902	8.31184876	1.0038
1	3 80441862	3 79258681	1 0031

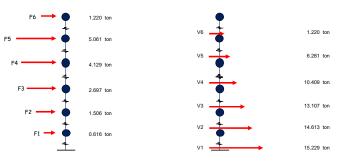
¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD TORSIONAL!	1.00
2p) Esquinas entrantes	1.00
3p) Discontinuidad del Diafragma	1.00

IPT(final) =	1.00	1 ,
	* Verit	ficación la o lp diferentes en ambas direcciones
la _(final) =	1.00	

0.110959877 ≤ 0.11? (no considerar)

* Coef. V _{T-basal final,} C _(ETABS) =	0.044661		SEGUND	O ANÁLISIS DEL MODELADO
* k _{T-(exp. de distrib. en altura-finali} =	1.594900	≥ 2? (no considerar)	

Paso 12: Estimación del Peso P (Artículo 26)


C-Edificaciones Comunes	100%CM+25%CV+25%CVT

Entrepiso	Wi _(ton)
Techo Escalera	10.811
Azotea	58.908
4	67.238
3	67.238
2	67.238
1	69.563
P _(ton) =	340.995

Paso 13A: Análisis Estático (Artículo 28)

	* Cálcu	lo de la fuerza cortante en la base (numeral 28.2)
v -	15 229	

Entrepiso	Wi _(ton)	hi _(m)	(hi)*	Wi*(hi)*	α_i	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	10.81	17.50	96.06	1038.41	0.080	1.220	1.220
Azotea	58.91	14.75	73.13	4308.04	0.332	5.061	6.281
4	67.24	11.95	52.28	3514.86	0.271	4.129	10.409
3	67.24	9.15	34.15	2296.07	0.177	2.697	13.107
2	67.24	6.35	19.07	1282.21	0.099	1.506	14.613
1	69.56	3.55	7.54	524.73	0.040	0.616	15.229
			Σ	12964.31	1.000	15.229	OK!

* Irregularidades en planta:
1p) Irregularidad Torsional y Torsional Extrema

Entrepiso	Δ Desp. Máx. (cm)	hi _(Cm)	Δ D.M./hi	0.5 Deriva Permisible	> 0.5 Deriva Permisible
Techo Escalera	1.17885819	275	0.0043	0.0025	EVALUAR
Azotea	0.44411786	280	0.0016	0.0025	NO EVALUAR
4	0.5765898	280	0.0021	0.0035	NO EVALUAR
3	0.68663443	280	0.0025	0.0035	NO EVALUAR
2	0.71890382	280	0.0026	0.0025	EVALUAR
1	0.6722150	3.55	0.1894	0.0025	EVALUAD

* Evaluación de la Irregularidad Torsional

Evaluación de la irregularidad Torsi	Ullai		
Entrepiso	Desp. Máx. (cm)	Desp. Prom. (cm)	Ratio > 1.3
Techo Escalera	4.24218971	4.13657102	1.0255
Azotea	3.09781782	2.91958618	1.0610
4	2.65385336	2.50831972	1.0580
3	2.07742395	1.96607968	1.0566
2	1.39095677	1.31526548	1.0575
1	0.6722159	0.63125727	1.0649

¡LA ESTRUCTURA NO PRESENTA IRREGULARIDAD	1.00
TORSIONAL!	
2p) Esquinas entrantes	1.00
3p) Discontinuidad del Diafragma	1.00
4p) Sistemas no Paralelos	1.00

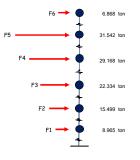
a _{L(final)} =	1.00
	1.00

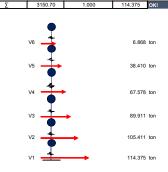
	ación la o lp diferentes en ambas direccio	
la _(final) =	1.00	
Ip _(final) =	1.00	
R _{I (final)} =	3.00	ESTRUCTURA REGULAR

		* Verificación C _T /R _T
C _L /R _L =	0.833333333	≤ 0.11? (no considerar)

* Coef. V _{L-basal-final,} C _(ETABS) =	0.335417		SEGUNDO ANÁLISIS DEL MODELADO
4.1		> 00 /!	

 Paso 12: Estimación del Peso P (Artículo 26)


 C-Edificaciones Comunes
 100%CM+25%CV+25%CVT


Entrepiso	Wi _(ton)
Techo Escalera	10.811
Azotea	58.908
4	67.238
3	67.238
2	67.238
1	69.563
P _(ton) =	340.995

Paso 13A: Análisis Estático (Artículo 28)

	* Cáld	culo de la fuerza cortante en la base (numeral 28.2)
v -	114 375	

Entrepiso	Wi _(ton)	hi _(m)	(hi) ^k	Wi*(hi)*	α_{i}	Fi _{T(Tn)}	Vi _{T(Tn)}
Techo Escalera	10.811	17.50	17.50	189.19	0.060	6.868	6.868
Azotea	58.908	14.75	14.75	868.89	0.276	31.542	38.410
4	67.238	11.95	11.95	803.49	0.255	29.168	67.578
3	67.238	9.15	9.15	615.23	0.195	22.334	89.911
2	67.238	6.35	6.35	426.96	0.136	15.499	105.411
1	69.563	3.55	3.55	246.95	0.078	8.965	114.375
	_	0150 50					

ETAPA 44: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV

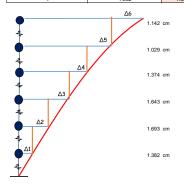
Paso 14A: Revisión de la Hipótesis del Apálisis

Estructuras de muros portantes de Albañilería confinada de no mas de 15m de altura, aun cuando sea irregular

Ro _{T(inicial)} =	8.00
SISTEMA ESTRUCURAL:	Pórticos
V _{T(ton)} =	15.229
Muros (ton-ETABS)	0.64
Columnas (ton-ETABS)	14.59
%Absorción de Muros	4.22

Pórticos	OK!
El cortante que toman los Muros es menor al 20%	

Paso 15A: Restricciones a la Irregularidad (Artículo 21)


No se permiten irregu	OK	
Ia _(final) =	1.00	
Ip _(final) =	1.00	
R _{T(final)} =	8.00	

Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)					
Techo Escalera	8.263					
Azotea	7.121					
4	6.092					
3	4.718					
2	3.075					
	1 392					

Paco 17A: Dietoreión Admieiblo (Artículo 32)

Paso 17A: Distorsion Admisible (Articulo 32)			<u> </u>					
	Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
	Techo Escalera	8.263	1.141680	275.00	0.004152	0.024909	0.007	RIGIDIZAR
	Azotea	7.121	1.029466	280.00	0.003677	0.022060	0.007	RIGIDIZAR
	4	6.092	1.373727	275.00	0.004995	0.029972	0.007	RIGIDIZAR
	3	4.718	1.643305	280.00	0.005869	0.035214	0.007	RIGIDIZAR
	2	3.075	1.693003	280.00	0.006046	0.036279	0.007	RIGIDIZAR
	1	1.382	1.381642	355.00	0.003892	0.023352	0.007	RIGIDIZAR

Der. Elás. x 0.75 x R

Paso 18A: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50	Ι.		
S/2 ≥	* 0.006h/2 _(cm) =	5.25		S/2 _(cm) =	5.51
	* 2/3 x Despl.máx/cm) =	5.51	1 '	•	

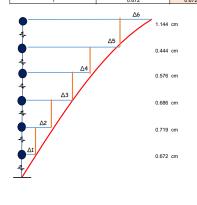
ETAPA 4A: VALIDACIÓN DE LA ESTRUCTURA (Canítulo IV

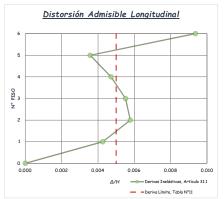
Paso 14A: Revisión de la Hipótesis del Análisis

Estructuras de muros portantes de Albañilería confinada de no mas de 15m de altura, aun cuando sea irregular

Albañilería Confinada	OK!
El cortante que toman los Muros es mayor al 70%	

Paso 15A: Restricciones a la Irregularidad (Artículo 21)


No se permiten irregula	OK	
la _(final) =	1.00	
Ip _(final) =	1.00	
R _{L(final)} =	3.00	


Paso 16A: Determinación de Desplazamientos Laterales (Artículo 31)

Entrepiso	Desplazamiento (cm)
Techo Escalera	4.242
Azotea	3.098
4	2.654
3	2.077
2	1.391
1	0.672

Paso 17A: Distorsión Admisible (Artículo 32)

Paso 17A. Distorsion Admissible (Articulo 32)							
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Deriva Elasticas	Deriva Inelástica	Deriva Máxima	Validación
Techo Escalera	4.242	1.144372	275.00	0.004161	0.009363	0.005	RIGIDIZAR
Azotea	3.098	0.443964	280.00	0.001586	0.003568	0.005	CUMPLE
4	2.654	0.576429	275.00	0.002096	0.004716	0.005	CUMPLE
3	2.077	0.686467	280.00	0.002452	0.005516	0.005	RIGIDIZAR
2	1.391	0.718741	280.00	0.002567	0.005776	0.005	RIGIDIZAR
1	0.672	0.672216	355.00	0.001804	0.004261	0.005	CHMDLE

Der. Elás. x 0.75 x R

Paso 18A: Separación entre Edificios (Artículo 33)

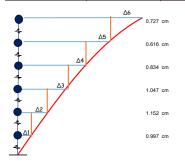
* mínimo _(cm) =	1.50	1 .		
S/2 ≥ * 0.006h/2 _(cm) =	5.25		S/2 _(cm) =	5.25
* 2/3 x Despl.máx(cm) =	2.83	1		

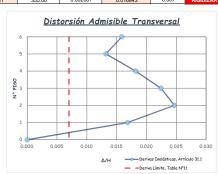
II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE TRANSVERSAL

Paso 13B: Análisis Dinámico (Artículo 29)

V _{T-ESTÁTICO (ton)}	15.229
V _{T-DIN} ÁMICO (ton)	11.367
% V _{T-DINÁMICO} / V _{T-ESTÁTICO}	74.640
V _{minima (ton)}	80
Factor de Amplificación:	1.071804

ETAPA 4B: VALIDACIÓN DE LA ESTRUCTURA (Capítulo IV)


aso 16R	Determinación	de Desniazamiento	s I aterales	(Artículo 3


Entrepiso	Desplazamiento (cm)
Techo Escalera	5.372
Azotea	4.645
4	4.029
3	3.195
2	2.148
1	0.997

Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)

Paso 17B: Distorsion Admisible (Articulo 32)					· ·		
Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	5.372	0.727173	275.00	0.002644	0.015866	0.007	RIGIDIZAR
Azotea	4.645	0.616467	280.00	0.002202	0.013210	0.007	RIGIDIZAR
4	4.029	0.833542	275.00	0.003031	0.018186	0.007	RIGIDIZAR
3	3.195	1.046695	280.00	0.003738	0.022429	0.007	RIGIDIZAR
2	2.148	1.151908	280.00	0.004114	0.024684	0.007	RIGIDIZAR
1	0.997	0.006531	355.00	0.002807	0.016943	0.007	PICIDIZAD

Paso 18B: Separación entre Edificios (Artículo 33)

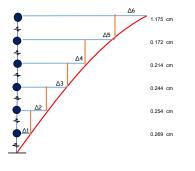
	* mínimo _(cm) =	1.50		
S/2 ≥	* 0.006h/2 _(cm) =	5.25	S/2 _(cm) =	5.25
•	* 2/3 x \(\Delta m\) ax \(\Delta m\) =	3.58		

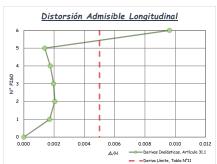
II) ANÁLISIS DINÁMICO MODAL ESPECTRAL - EJE LONGITUDINAL

Paso 13B: Análisis Dinámico (Artículo 29)

114.375
81.521
71.275
80
1.122410

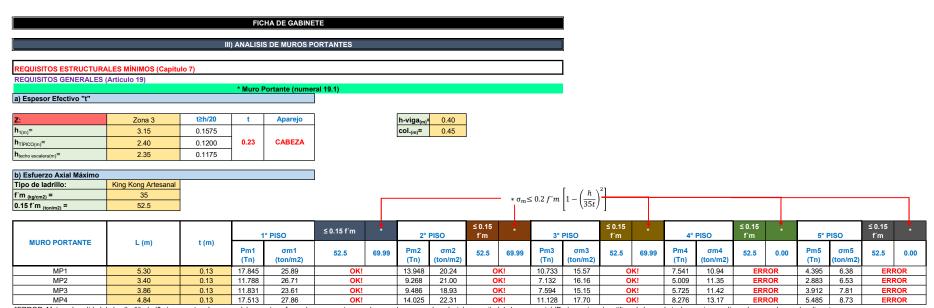
DISEÑO ESTRUCTURAL


Paso 16B: Determinación de Desplazamientos Laterales (Artículo 31)


Entrepiso	Desplazamiento (cm)
Techo Escalera	2.328
Azotea	1.153
4	0.981
3	0.767
2	0.523
1	0.269

Der. Elás. x 0.75 x R

Paso 17B: Distorsión Admisible (Artículo 32)


Entrepiso	Desplazamiento (cm)	Δ Desp. (cm)	H (cm)	Derivas Elasticas	Derivas Inelásticas	Deriva Máxima	Validación
Techo Escalera	2.328	1.175441	275.00	0.004274	0.009617	0.005	RIGIDIZAR
Azotea	1.153	0.171856	280.00	0.000614	0.001381	0.005	CUMPLE
4	0.981	0.213589	275.00	0.000777	0.001748	0.005	CUMPLE
3	0.767	0.244236	280.00	0.000872	0.001963	0.005	CUMPLE
2	0.523	0.254464	280.00	0.000909	0.002045	0.005	CUMPLE
1	0.269	0.268789	355.00	0.000757	0.001704	0.005	CUMPLE

Paso 18B: Separación entre Edificios (Artículo 33)

	* mínimo _(cm) =	1.50		
S/2 ≥	* 0.006h/2 _(cm) =	5.25	S/2 _(cm) =	5.25
	* 2/3 x Amáx _(cm) =	1.55		

*ERROR: Mejorar la calidad de la albañilería (fm), aumentar el espesor del muro, transformarlo en concreto armado, o ver la manera de reducir la magnitud de la carga axial (Pm) por ejemplo, utilizando losas de techo macizas o aligeradas armadas en dos direcciones.

* Estructuración en Planta (numeral 19.2)					
a) Muros a Reforzar					
Ubicación de Muros: Muros Perimetrales de Cierre					
V _{E1(ton)} =	114.375				

	1° Nivel					
Muro Portante	Cortante	%	¿Reforzar?			
MP1	26.543	23.21	SI			
MP2	15.838	13.85	SI			
MP3	24.293	21.24	SI			
MP4	31.003	27.11	SI			

V _{E2(ton)} =	105.411					
2° Nivel						
Muro Portante	Cortante	%	¿Reforzar?			
MP1	25.349	24.05	SI			
MP2	14.049	13.33	SI			
MP3	21.821	20.70	SI			
MP4	28.2	26.75	SI			

V _{E3(ton)} =	89.911				
3° Nivel					
Muro Portante	Cortante	%	¿Reforzar?		
MP1	21.75	24.19	SI		
MP2	11.457	12.74	SI		
MP3	18.498	20.57	SI		
MP4	24.131	26.84	SI		

V _{E4(ton)} =	67.578		
	4° Nivel		
Muro Portante	Cortante	%	¿Reforzar?
MP1	16.303	24.12	SI
MP2	8.057	11.92	SI
MP3	13.908	20.58	SI
MP4	18.326	27.12	SI

V _{E5(ton)} =	38.410				
5° Nivel					
Muro Portante	Cortante	%	¿Reforzar?		
MP1	9.867	25.69	SI		
MP2	4.109	10.70	SI		
MP3	8.378	21.81	SI		
MP4	11.3	29.42	SI		

b) Densidad Mínima de l	luros Reforzados			
Z:	0.35			•
U:	1.00		ZUSN/56=	0.036
S:	1.15]		
N _(número de pisos) :	5.00	1		

Muro Portante	L (m)	t (m)	Area de Corte
MP1	5.30	0.13	0.689
MP2	3.40	0.13	0.441
MP3	3.86	0.13	0.501
MP4	4.84	0.13	0.629
Área de la Planta Típica	71.18	Σ	2.260

Densidad de Muros Reforzados	0.032	CAMBIAR ESPESOR DE ALGUNOS MUROS O AGREGAR PLACAS DE CONCRETO ARMADO
---------------------------------	-------	--

ANÁLISIS Y DISEÑO ESTRUCTURAL (Capítulo 8)
DISEÑO DE MUROS DE ALBAÑILERÍA (Artículo 26)

* Control de Fisuración (numeral 26.2)

Tipo de ladrillo:	King Kong Artesanal
v _{m (kg/cm2)} =	5.1

	Sismo Mod	Sismo Moderado (R=6) Control de Fisuración 1º Nivel			ón 1° Nivel					
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	5.30	0.13	16.21	13.27	29.24	2.406	1.00	21.300	11.715	FISURAS POR CORTE
MP2	3.40	0.13	10.58	7.92	15.95	1.686	1.00	13.688	7.528	FISURAS POR CORTE
MP3	3.86	0.13	10.79	12.15	24.73	1.893	1.00	15.261	8.394	FISURAS POR CORTE
MP4	4.84	0.13	15.91	15.50	33.53	2.235	1.00	19.687	10.828	FISURAS POR CORTE

Sismo Moder					erado (R=6)	Control de Fisuración 2º Nivel				
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	5.30	0.13	12.65	12.67	21.31	3.152	1.00	20.482	11.265	FISURAS POR CORTE
MP2	3.40	0.13	8.30	7.02	10.89	2.189	1.00	13.164	7.240	OK!
MP3	3.86	0.13	8.62	10.91	17.15	2.453	1.00	14.761	8.119	FISURAS POR CORTE
MP4	4.84	0.13	12.70	14.10	23.44	2.908	1.00	18.948	10.421	FISURAS POR CORTE

	Sismo Moderado (R=6) Control de Fisuración 3° Nivel			ón 3° Nivel						
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	?Ve ≤ 0.55 Vm?
MP1	5.30	0.13	9.76	10.88	17.42	3.309	1.00	19.817	10.899	OK!
MP2	3.40	0.13	6.41	5.73	8.56	2.271	1.00	12.728	7.001	OK!
MP3	3.86	0.13	6.89	9.25	14.04	2.540	1.00	14.365	7.901	FISURAS POR CORTE
MP4	4.84	0.13	10.07	12.07	19.14	3.047	1.00	18.344	10.089	FISURAS POR CORTE

				Sismo Mod	erado (R=6)	Control de Fisuración 4° Nivel				
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	5.30	0.13	6.89	8.15	12.44	3.473	1.00	19.157	10.537	OK!
MP2	3.40	0.13	4.53	4.03	5.83	2.347	1.00	12.295	6.762	OK!
MP3	3.86	0.13	5.19	6.95	10.20	2.627	1.00	13.973	7.685	OK!
MP4	4.84	0.13	7.48	9.16	13.87	3.195	1.00	17.749	9.762	OK!

	Sismo Mod	erado (R=6)	Control de Fisuración 5° Nivel			ón 5° Nivel				
Muro Portante	L (m)	t (m)	P _g (ton)	V _e (ton)	M _e (ton.m)	α (calc.)	α	V _m (ton)	0.55V _m	¿Ve ≤ 0.55 Vm?
MP1	5.30	0.13	4.06	4.93	7.14	3.660	1.00	18.506	10.178	OK!
MP2	3.40	0.13	2.64	2.05	2.90	2.409	1.00	11.861	6.524	OK!
MP3	3.86	0.13	3.54	4.19	6.15	2.627	1.00	13.592	7.476	OK!
MP4	4.84	0.13	4.95	5.65	8.45	3.232	1.00	17.166	9.441	OK!

* Verificación de la resistencia al corte del edificio (numeral 26.4)

				Sismo Se	Resistencia al corte 1° Nivel			
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	5.30	0.13	16.21	26.54	58.47	2.406	1.00	21.300
MP2	3.40	0.13	10.58	15.84	31.90	1.686	1.00	13.688
MP3	3.86	0.13	10.79	24.29	49.47	1.893	1.00	15.261
MP4	4.84	0.13	15.91	31.00	67.06	2.235	1.00	19.687
							Σ	69.936

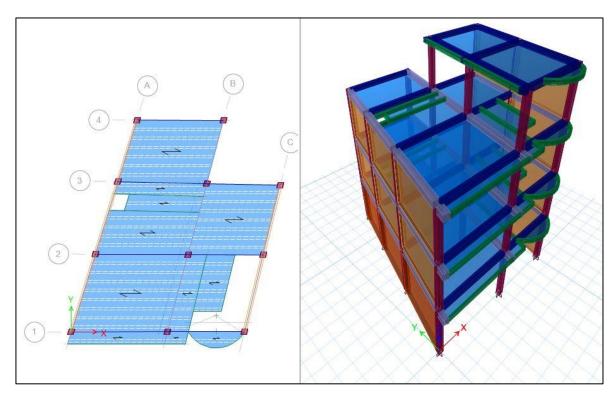
				Sismo Sev	vero (R=3)	Resister	icia al cor	te 2° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	5.30	0.13	12.65	25.35	42.63	3.152	1.00	20.482
MP2	3.40	0.13	8.30	14.05	21.79	2.189	1.00	13.164
MP3	3.86	0.13	8.62	21.82	34.29	2.453	1.00	14.761
MP4	4.84	0.13	12.70	28.20	46.88	2.908	1.00	18.948
	_				_		Σ	67.355

				Sismo Sev	/ero (R=3)	icia al corte 3° Nivel		
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	5.30	0.13	9.76	21.75	34.84	3.309	1.00	19.817
MP2	3.40	0.13	6.41	11.46	17.13	2.271	1.00	12.728
MP3	3.86	0.13	6.89	18.50	28.08	2.540	1.00	14.365
MP4	4.84	0.13	10.07	24.13	38.29	3.047	1.00	18.344
	•			-			Σ	65.254

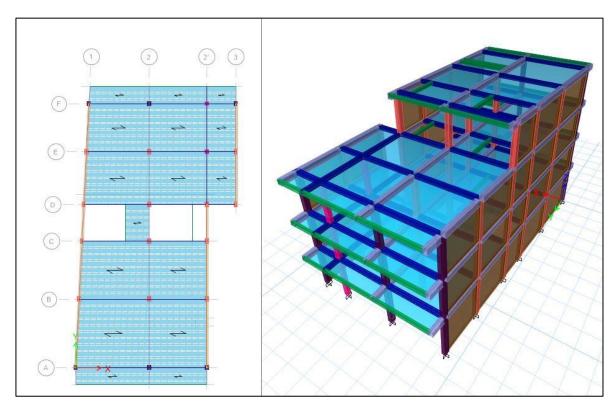
				Sismo Sev	vero (R=3)	Resister	icia al cor	te 4° Nivel
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	5.30	0.13	6.89	16.30	24.88	3.473	1.00	19.157
MP2	3.40	0.13	4.53	8.06	11.66	2.347	1.00	12.295
MP3	3.86	0.13	5.19	13.91	20.41	2.627	1.00	13.973
MP4	4.84	0.13	7.48	18.33	27.73	3.195	1.00	17.749
	•	•		•			Σ	63.175

				Sismo Severo (R=3) Resisten			cia al corte 5° Nivel	
Muro Portante	L (m)	t (m)	P _g (ton)	V _E (ton)	M _E (ton.m)	α (calc.)	α	V _m (ton)
MP1	5.30	0.13	4.06	9.87	14.29	3.660	1.00	18.506
MP2	3.40	0.13	2.64	4.11	5.79	2.409	1.00	11.861
MP3	3.86	0.13	3.54	8.38	12.29	2.627	1.00	13.592
MP4	4.84	0.13	4.95	11.30	16.90	3.232	1.00	17.166
		-	-				Σ	61.126

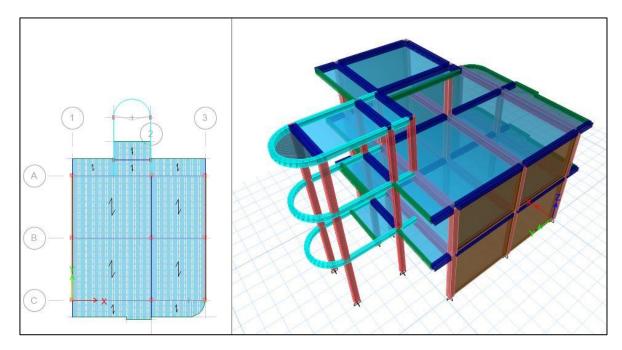
	Sismo Sever	o (R=3)	
Nivel	∑V _{mi (ton)}	V _{Ei (ton)}	¿∑V _{mi} ≥ V _{Ei} ?
5° Nivel	61.126	38.410	OK!
4° Nivel	63.175	67.578	INADECUADA RESISTENCIA Y RIGIDEZ
3° Nivel	65.254	89.911	INADECUADA RESISTENCIA Y RIGIDEZ
2° Nivel	67.355	105.411	INADECUADA RESISTENCIA Y RIGIDEZ
1° Nivel	69.936	114.375	INADECUADA RESISTENCIA Y RIGIDEZ

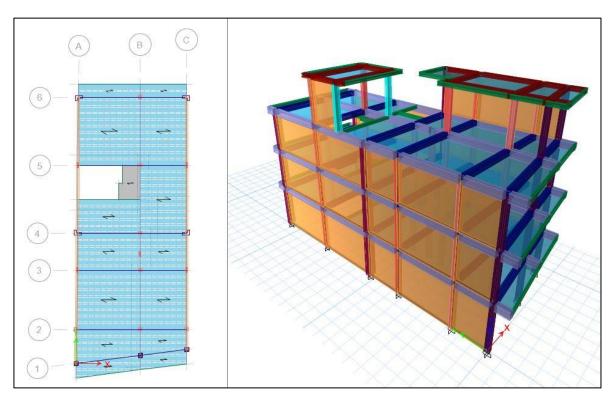

	HU - 5											
	* Análi	sis del efecto de	los elementos no	estructurales (E.	030 - Artículo 38)							
C1 =	3.00	Elementos q	Elementos que al fallar puedan precipitarse fuera de la edificación y cuya falla entrañe peligro para personas u otras estructuras.									
Ym (ladrillo pandereta	1350.00	kg/m³	/m³ Z = 0.35 S = 1.15									
Espesor (parapeto) =	0.11	m	U =	1.00								
Pe (parapeto) =	148.50	kg/m²	F=Fi/Pi x C1 x Pe			_						
Entrepiso	Pi _(ton)	Fi _{T(Tn)}	F _(kg/m²)	0.5xZxUxSxPe	¿F>0.5ZUSPe?							
Techo Escalera	11.813	7.755	292.457	29.886	CUMPLE	En ningún nivel del edificio la						
Azotea	66.296	29.014	194.971	29.886	CUMPLE	Íuerza F calculada con el artícu 38 es menor que 0.5xZUSPe						
1	90.657	19.838	97.486	29.886	CUMPLE							
Método d	de los Esfuerzos	Admisibles (Ran	igo Elástico) (E.070) Albañilería - Ca	pítulo 9) - Caso	4: Muro en Volad	izo					
m =	0.50		f't =	1.50	kg/cm²							
a (altura del muro) =	1.20	m		_								
	$Ws = F \times 0.8$	Ms = mxa ² XWs	fm = 6xMs/t ²		_							
Entrepiso	Ws _(kg/m²)	Ms _(kg-m/m)	fm _(kg/cm²)	¿fm > f't?]							
Techo Escalera	233.965	168.455	8.353	SE FISURA	El parapeto no resiste las cargas perpendiculare							
Azotea	155.977	112.303	5.569	SE FISURA	su plano producto de las fuerzas de inercia del sismo.							
1	77.988	56.152	2.784	SE FISURA								

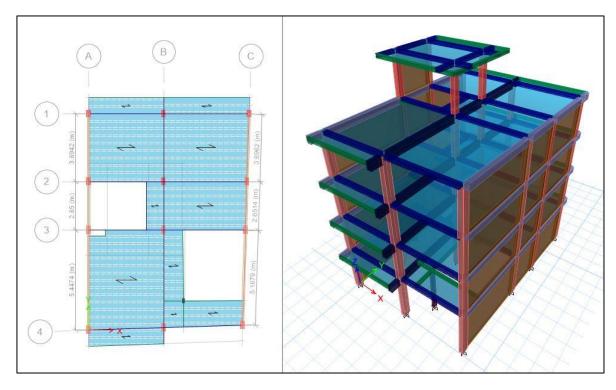
HU - 3												
* Análisis del efecto de los elementos no estructurales (E.030 - Artículo 38)												
C1 =	3.00	Elementos que al fallar puedan precipitarse fuera de la edificación y cuya falla entrañe peligro para personas u otras estructuras.										
Ym (ladrillo pan	1350.00	kg/m³	Z =	0.35	S =	1.15						
Espesor (parape	0.11	m	U =	1.00								
Pe (parapeto) =	148.50	kg/m²	F=Fi/Pi x C1 x Pe	9	-							
Entrepiso	Pi _(ton)	Fi _{T(Tn)}	F _(kg/m²)	0.5xZxUxSxPe	¿F>0.5ZUSPe?							
Techo Escalera	20.860	14.255	304.431	29.886	CUMPLE	En ningún nivel del edificio la Íuerza F calculada con el artículo 38 es menor que 0.5xZUSPe						
Azotea	64.154	33.030	229.366	29.886	CUMPLE							
2	70.054	24.264	154.300	29.886	CUMPLE							
1	70.607	12.558	79.235	29.886	CUMPLE							
Método de los Esfuerzos Admisibles (Rango Elástico) (E.070 Albañilería - Capítulo 9) - Caso 4: Muro en Voladizo												
m =	0.50		f't =	1.50	kg/cm²							
a (altura del mui	1.20	m										
	$Ws = F \times 0.8$	Ms = mxa ² XWs	$fm = 6xMs/t^2$]								
Entrepiso	Ws _(kg/m²)	Ms _(kg-m/m)	fm _(kg/cm²)	¿fm > f´t?	El parapeto no resiste las cargas perpendiculares a su plano producto de las fuerzas de inercia del sismo.							
Techo Escalera	243.545	175.352	8.695	SE FISURA								
Azotea	183.492	132.115	6.551	SE FISURA								
2	123.440	88.877	4.407	SE FISURA								
1	63.388	45.640	2.263	SE FISURA								

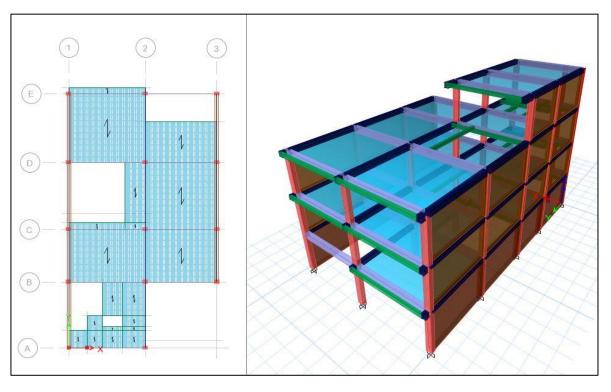

ET - 5												
* Análisis del efecto de los elementos no estructurales (E.030 - Artículo 38)												
C1 =	3.00	Elementos que al fallar puedan precipitarse fuera de la edificación y cuya falla entrañe peligro para personas u otras estructuras.										
Ym (ladrillo pan	1350.00	kg/m³	Z =	0.35	S =	1.15						
Espesor (parape	0.11	m	U =	1.00								
Pe (parapeto) =	148.50	kg/m²	F=Fi/Pi x C1 x Pe									
Entrepiso	Pi _(ton)	Fi _{T(Tn)}	F _(kg/m²)	0.5xZxUxSxPe	¿F>0.5ZUSPe?	En ningún nivel del edificio la Íuerza F calculada con el artículo 38 es menor que 0.5xZUSPe						
Techo Escalera	18.326	11.503	279.628	29.886	CUMPLE							
Azotea	84.594	42.664	224.684	29.886	CUMPLE							
3	100.522	38.742	171.702	29.886	CUMPLE							
2	100.522	26.788	118.719	29.886	CUMPLE							
1	94.446	13.936	65.737	29.886	CUMPLE							
Método de los Esfuerzos Admisibles (Rango Elástico) (E.070 Albañilería - Capítulo 9) - Caso 4: Muro en Voladizo												
m =	0.50		f't =	1.50	kg/cm²							
a (altura del mui	1.20	m		_								
	$Ws = F \times 0.8$	Ms = mxa ² XWs	fm = 6xMs/t ²		_							
Entrepiso	Ws _(kg/m²)	Ms _(kg-m/m)	fm _(kg/cm²)	¿fm > f´t?]							
Techo Escalera	223.703	161.066	7.987	SE FISURA	_, ,	parapeto no resiste las cargas perpendiculares a						
Azotea	179.747	129.418	6.417	SE FISURA								
3	137.361	98.900	4.904	SE FISURA	su plano producto de las fuerzas de inercia del sismo.							
2	94.975	68.382	3.391	SE FISURA								
1	52.590	37.865	1.878	SE FISURA								

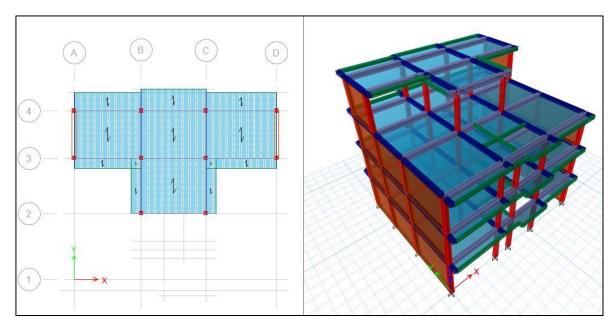
CH-4 * Análisis del efecto de los elementos no estructurales (E.030 - Artículo 38) Elementos que al fallar puedan precipitarse fuera de la edificación y cuya falla entrañe peligro para C1 = 3.00 personas u otras estructuras. Ym (ladrillo pan kg/m³ S = 1350.00 Z = 0.35 1.15 U = 0.11 1.00 Espesor (parape m kg/m² F=Fi/Pi x C1 x Pe Pe (parapeto) = 148.50 Pi_(ton) Fi_{T(Tn)} F_(kg/m²) 0.5xZxUxSxPe ¿F>0.5ZUSPe? **Entrepiso** Techo Escalera 283.016 29.886 **CUMPLE** 10.811 6.868 31.542 58.908 238.542 29.886 **CUMPLE** Azotea En ningún nivel del edificio la Íuerza F calculada con el artículo 67.238 **CUMPLE** 29.168 193.259 29.886 38 es menor que 0.5xZUSPe 3 67.238 22.334 147.977 29.886 **CUMPLE** 67.238 29.886 15.499 102.694 **CUMPLE** 69.563 8.965 57.412 29.886 **CUMPLE** Método de los Esfuerzos Admisibles (Rango Elástico) (E.070 Albañilería - Capítulo 9) - Caso 4: Muro en Voladizo m = f't = kg/cm² 0.50 1.50 a (altura del mu 1.20 $Ms = mxa^2XWs$ $fm = 6xMs/t^2$ $Ws = F \times 0.8$ $Ws_{(kg/m^2)}$ Ms_(kg-m/m) fm_(kg/cm²) **Entrepiso** ¿fm > f't? Techo Escalera 226.413 163.017 8.083 **SE FISURA** Azotea 190.833 137.400 6.813 **SE FISURA** El parapeto no resiste las cargas perpendiculares a su plano producto de las fuerzas de inercia del 4 154.607 111.317 5.520 **SE FISURA** sismo. 3 118.381 85.235 4.227 **SE FISURA** 2 59.152 2.933 82.155 **SE FISURA** 45.929 33.069 1 1.640 **SE FISURA**

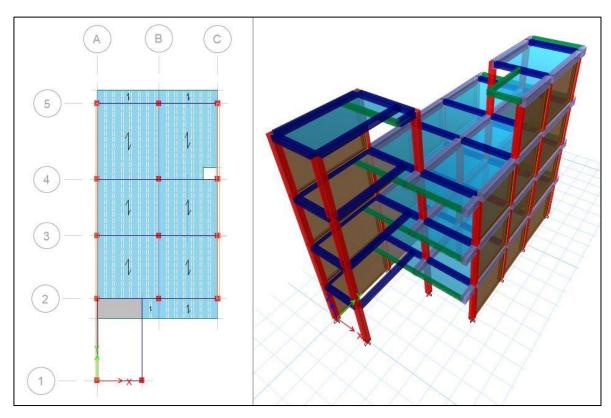


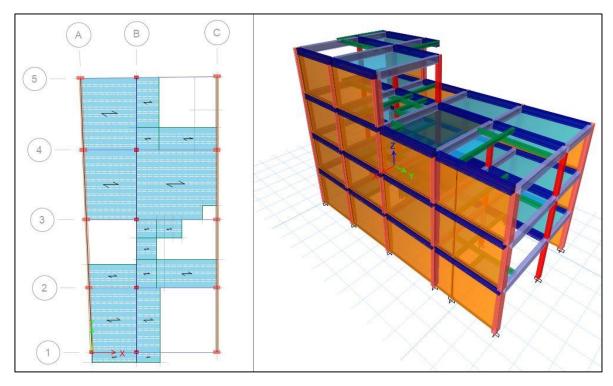

Vivienda de Tres Pisos + Azotea (ET-1)

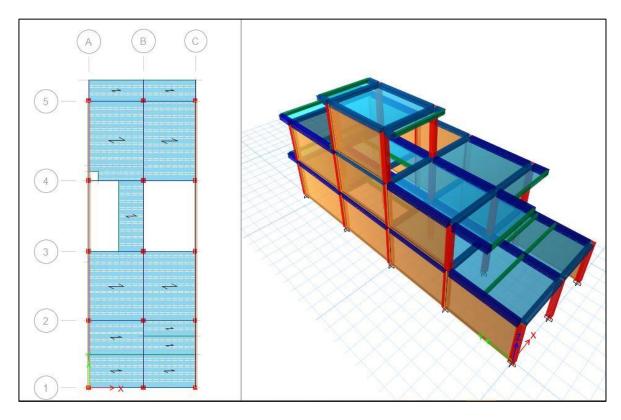

Vivienda de Tres Pisos + Azotea (ET-2)

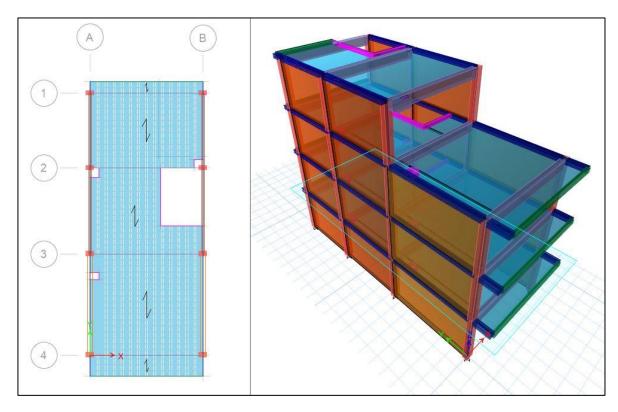

Vivienda de Dos Pisos + Azotea (ET-3)

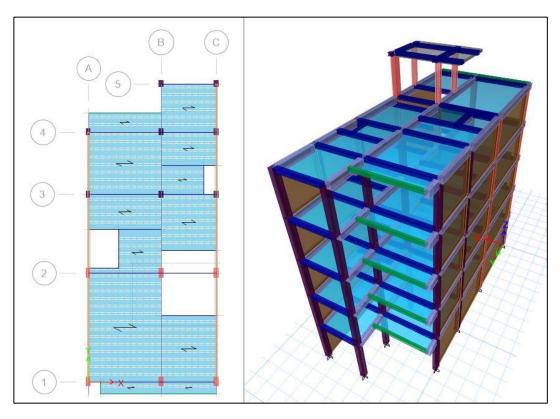

Vivienda de Tres Pisos + Azotea (ET-4)

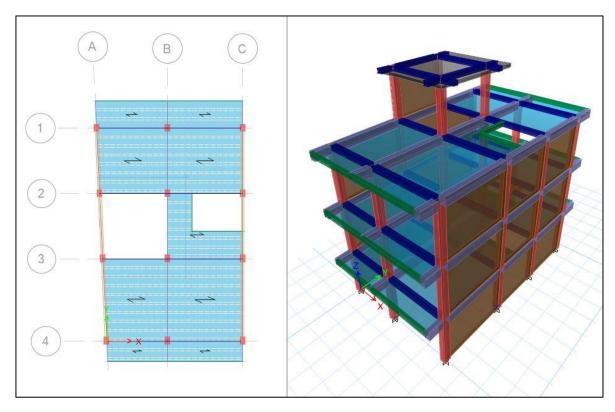

Vivienda de Cuatro Pisos + Azotea (ET-5)

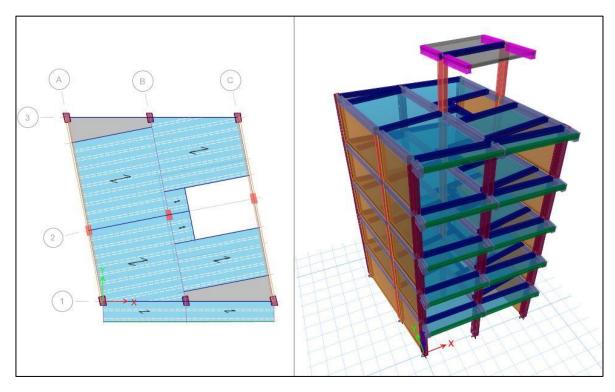

Vivienda de Tres Pisos + Azotea (HU-1)

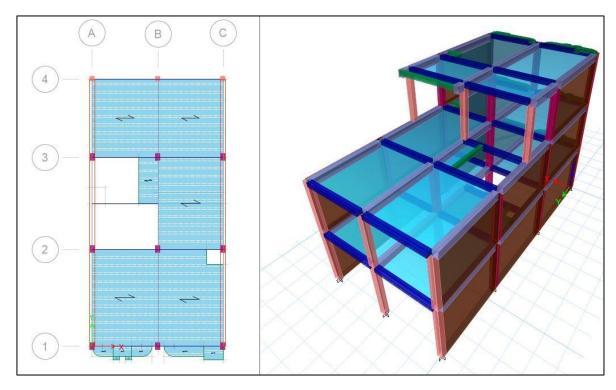

Vivienda de Tres Pisos + Azotea (HU-2)


Vivienda de Tres Pisos + Azotea (HU-3)

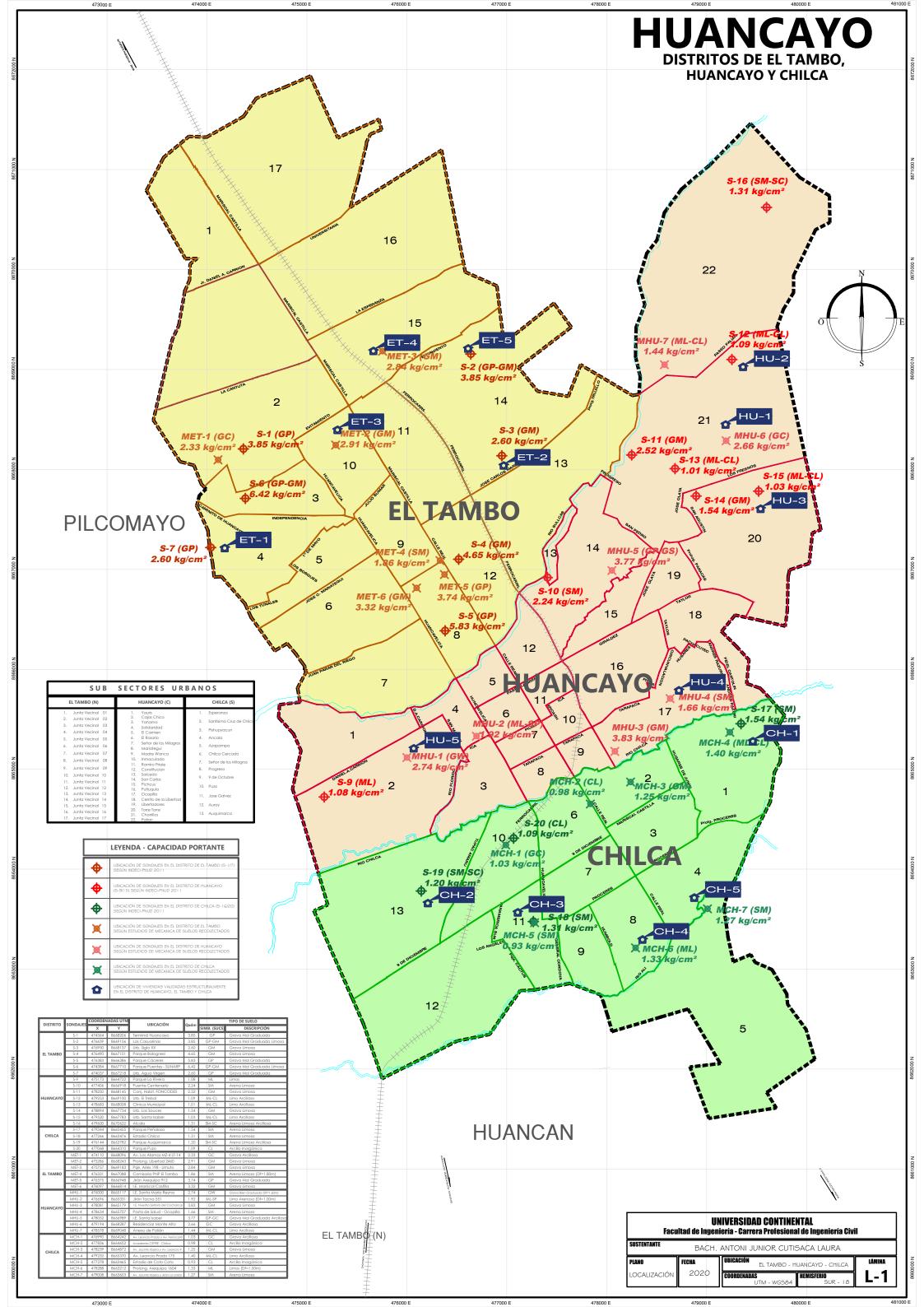

Vivienda de Tres Pisos + Azotea (HU-4)


Vivienda de Dos Pisos + Azotea (HU-5)


Vivienda de Tres Pisos + Azotea (CH-1)


Vivienda de Cinco Pisos + Azotea (CH-2)

Vivienda de Tres Pisos + Azotea (CH-3)



Vivienda de Cinco Pisos + Azotea (CH-4)

Vivienda de Dos Pisos + Azotea (CH-5)

ANEXO 5: PLANO DE LOCALIZACIÓN DE CAPACIDAD PORTANTE EN HUANCAYO METROPOLITANO

	CONFIABILIDA	D E	DEL	ES	TUE	OIO																			
N°	INDICADORES	_		_	!					الصب											الـــــــــــــــــــــــــــــــــــــ				CH-5
Ĺ	INDIOADONEO	Si	No	Si	No	Si	No S	Si No	Si	No	Si	lo S	No	SiN	o S	No	Si	No:	SiN	Si	No	SiN	o Si	No	SiNo
1	¿La vivienda presenta irregularidad estructural?	х			Х	Х		Х		х	Х		Х	х		Х		х	×		Х	>	ĸ	х	X
2	¿La vivienda cumple con las restricciones a la irregularidad estructural?	x		X		Х)	K	х		Х	X		х	Х		X		x	Х		х	X		X
3	¿Todos los entre pisos de la vivienda tienen una distorsión de entrepiso menor a la admisible mediante el análisis estático (Dirección Transversal)?		х		Х		х	Х		Х		x	Х	>	<	Х		Х	×	,	х	>	K	×	X
4	¿Todos los entre pisos de la vivienda tienen una distorsión de entrepiso menor a la admisible mediante el análisis estático (Dirección . Longitudinal)?		х	X		Х		Х	X]	x x		x	Х		Х		х		х	Х		x	X
5	¿Todos los entre pisos de la vivienda tienen una distorsión de entrepiso menor a la admisible mediante el análisis dinámico modal espectral (Dirección . Transversal)?		x		Х		х	Х		х]	x	Х	>	<	х		Х	×	,	х	>	K	x	X
6	¿Todos los entre pisos de la vivienda tienen una distorsión de entrepiso menor a la admisible mediante el análisis dinámico modal espectral (Dirección Longitudinal)?	х		X		х		Х		х	х	×		X	Х		X		x		х	х	floor	x	x
7	¿Todos los muros portantes de la vivienda cumplen con el espesor efectivo (t) correcto?	х			Х		x >	<		х	х	X		х	Х		X		x		х	х		x	X
8	¿Todos los muros portantes de la vivienda cumplen la verificación del esfuerzo axial máximo?	х		X		х)	<	х		х	X		X	Х		X		x	х		х		x	X
9	¿La vivienda cumple con la densidad mínima de muros reforzados?	х			Х	Х)	<		х	х	X		X	Х		Х		х		х	х		x	X
10	¿Todos los muros portantes de la vivienda cumplen con el control de fisuración?		Х		Х		х	Х		х	х	Х		>	(Х	Х		х		Х	х		x	X
11	¿Todos los muros portantes de la vivienda cumplen con la verificación de resistencia al corte?		х		Х		x >	<		х	х	X		X	Х		Х		x		Х	х		x	Х
12	¿La vivienda cuenta con una separación respecto a otras edificaciones cercanas?		х		Х		х	Х		x]	x	Х	>	<	Х		х	×		х		K	X	Х

ANEXO 7: ENSAYO DE ESCLEROMETRÍA

Informe Nro. 25 Esclerometría/Marzo 2020

INFORME DE RESISTENCIA DE ESCLEROMETRÍA AL **CONCRETO**

PROYECTO DE TESIS

"VALIDACIÓN ESTRUCTURAL DE VIVIENDAS **INFORMALES CONSTRUIDAS EN HUANCAYO** METROPOLITANO HASTA EL AÑO 2017"

SOLICITA:

ANTONI JUNIOR CUTISACA LAURA

: EL TAMBO, HUANCAYO DISTRITO

Y CHILCA

PROVINCIA: HUANCAYO

DEPARTAMENTO : JUNÍN

Marzo - 2020

GENIERO CIVIL

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca Registrada en 📗 Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

INFORME DE LA RESISTENCIA DE **ESCLEROMETRÍA AL CONCRETO**

A. GENERALIDADES

a.1 OBJETO DEL ESTUDIO

Realizar el ensayo al concreto con el Esclerómetro para verificar la capacidad de resistencia del concreto de la obra "VALIDACIÓN ESTRUCTURAL DE VIVIENDAS INFORMALES CONSTRUIDAS EN HUANCAYO METROPOLITANO HASTA EL AÑO 2017"

a.2 UBICACIÓN DEL ÁREA EN ESTUDIO

La zona de estudio se encuentra ubicada en los Distritos de El Tambo, Huancayo y Chilca, en la Provincia de Huancayo, Departamento de Junín.

a.3 CONDICIONES CLIMÁTICAS

El clima es típico al de la sierra del Perú. La atmósfera es transparente y con escaza humedad atmosférica. Las lluvias se

usam Ortíz Casas INGENIERO CIVIL

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

RESOLUCIÓN № 015082 - 2014 /DSD

presentan oportunamente y con regularidad, las actividades agrícolas y pecuarias son productivas. Con estación seca (abril – noviembre).

1. RESISTENCIA AL CONCRETO

Cuando se habla de la resistencia del concreto, generalmente se hace referencia a la resistencia a compresión del concreto endurecido, la etapa de endurecimiento inicia con el fraguado final del concreto y prosigue en el tiempo dependiendo totalmente de las condiciones del curado del material.

Normalmente la resistencia del concreto se evalúa a los 28 días, sin embargo, esta evaluación se está haciendo con el Equipo Esclerómetro para comprobar y modificar algunos ambientes de los niveles a diferentes edades según a la conveniencia de monitorear la resistencia.

Para evaluar la resistencia del concreto se emplean mínimo tres disparos con el Esclerómetro en diferentes ángulos según como te indique el solicitante, pero en este caso se han aplicado cinco disparos a pedido del solicitante para lo cual adjuntamos el certificado correspondiente de los ensayos realizados en la cual el solicitante o el profesional tiene que evaluar según los datos que se le alcance.

1.1RESISTENCIAS DEL CONCRETO

• El concreto es una masa endurecida que por su propia naturaleza es discontinua y heterogénea.

Susam Ortiz Casas
INGENIERO CIVIL
CIP. Nº 85269

Oscar Abraham Ortiz Jahn
ESP DE MECANICA DE SUELOS
Y PAVIMENTOS

Las propiedades de cualquier sistema heterogéneo dependen de las características físicas y químicas de los materiales que lo componen y de las interacciones entre ellos.

FACTORES QUE INFLUYEN 1.1.1 EN LA RESISTENCIA MECÁNICA DEL CONCRETO

1.1.1.1 Contenido de cemento.

El cemento es el material más activo de la mezcla de concreto, por tanto, sus características y sobre todo su contenido (proporción) dentro de la mezcla tiene una gran influencia dentro de la resistencia del concreto a cualquier edad. A mayor contenido de cemento se puede obtener una mayor resistencia y a menor contenido la resistencia de concreto va a ser menor.

1.1.1.2 Relación agua – cemento y contenido de aire.

En el año de 1918 Duff Abrams formuló la conocida "Ley de Abrams", según la cual, para los mismos materiales y condiciones ensayo, la resistencia del concreto completamente compactado, a una edad dada, inversamente proporcional a la relación agua – cemento.

Este es el factor más importante en la resistencia del concreto:

Relación agua - cemento = A/C

Dónde:

usam Ortiz Casas

NGENIERO CIVIL CIP. Nº 85269

Oscar Abraham Ortiz Jahn

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca Registrada en 📗 Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

A= Contenido de agua en la mezcla en kg.

C= Contenido de cemento en la mezcla en kg.

1.1.1.3 Influencia de los agregados

- La distribución granulométrica juega un papel importante en la resistencia del concreto, ya que si esta es continua permite la máxima capacidad del concreto en estado fresco y una mayor densidad en estado endurecido, lo que se traduce en una mayor resistencia.
- La forma y textura de los agregados también influyen. Agregados de forma cúbica y rugosa permiten mayor adherencia de la interfase matriz - agregado respecto de los agregados redondeados y lisos, aumentando la resistencia del concreto. Sin embargo, este efecto se compensa debido a que los primeros requieren mayor contenido de agua que los segundos para tener la misma manejabilidad.
- La resistencia y rigidez de las partículas del agregado también influyen en la resistencia del concreto.
- 1.1.1.4 Arbitrariamente la edad de 28 días como la edad en la que se debe especificar el valor de la resistencia del concreto.

Se debe tener en cuenta que las mezclas de concreto con menor relación agua - cemento aumentan de resistencia más rápidamente que las mezclas de concreto con mayor relación agua – cemento.

Oscar Abraham Ortiz Jahn

RESULTADO DE LOS ENSAYOS REALIZADOS DE **ESCLEROMETRÍA**

Se realizaron 70 unidades de puntos con 05 disparos por el solicitante los días 12 y 13 de marzo del 2020, dando resultados variados con resistencias que el evaluador o el profesional indique sus óptimas según los fines que convenga. (Adjunto certificación de los ensayos)

Nro DE SERIE	TIPO DE ESTRUCTURA O ELEMENTO (VIVIENDA HU-5)	Lectura F´c (kg/cm2)	%
			Calculado al
			tipo de
	270		concreto F´c
			175kg/cm2
1	COLUMNA C1-1er NIVEL	175	100.0%
2	COLUMNA C2-1er NIVEL	162	92.6%
3	LOSA-1er NIVEL	166	94.9%
4	VIGA-1er NIVEL	172	98.3%
5	VIGA VOLADO-1er NIVEL	172	98.3%
6	COLUMNA C1-2do NIVEL	168	96.0%
7	COLUMNA C2-2do NIVEL	175	100.0%
8	LOSA-2do NIVEL	166	94.9%
9	VIGA-2do NIVEL	172	98.3%
10	VIGA VOLADO-2do NIVEL	166	94.9%

Susam Ortíz Casas NGENIERO CIVIL CIP. Nº 85269

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca @egistrada en il Indecopi

RESOLUCIÓN Nº 015082 - 2014 / DSD

Nro DE SERIE	TIPO DE ESTRUCTURA O ELEMENTO (VIVIENDA HU-3)	Lectura F´c (kg/cm2)	%
			Calculado al tipo de concreto F´c 175kg/cm2
1	COLUMNA C1-1er NIVEL	175	100.0%
2	COLUMNA C2-1er NIVEL	162	92.6%
3	LOSA-1er NIVEL	166	94.9%
4	VIGA-1er NIVEL	172	98.3%
5	VIGA VOLADO-1er NIVEL	172	98.3%
6	COLUMNA C1-2do NIVEL	168	96.0%
7	COLUMNA C2-2do NIVEL	175	100.0%
8	LOSA-2do NIVEL	166	94.9%
9	VIGA-2do NIVEL	172	98.3%
10	VIGA VOLADO-2do NIVEL	166	94.9%
11	COLUMNA C1-3er NIVEL	168	96.0%
12	COLUMNA C2-3er NIVEL	175	100.0%
13	LOSA-3er NIVEL	166	94.9%
14	VIGA-3er NIVEL	161	92.0%
15	VIGA VOLADO-3er NIVEL	166	94.9%

Susam Ortiz Casas INGENIERO CIVIL CIP. Nº 85269

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Nro DE SERIE	TIPO DE ESTRUCTURA O ELEMENTO (VIVIENDA ET-5)	Lectura F´c (kg/cm2)	%
			Calculado al tipo de concreto F´c 175kg/cm2
1	COLUMNA C1-1er NIVEL	175	100.0%
2	COLUMNA C2-1er NIVEL	162	92.6%
3	LOSA-1er NIVEL	166	94.9%
4	VIGA-1er NIVEL	172	98.3%
5	VIGA VOLADO-1er NIVEL	172	98.3%
6	COLUMNA C1-2do NIVEL	168	96.0%
7	COLUMNA C2-2do NIVEL	175	100.0%
8	LOSA-2do NIVEL	166	94.9%
9	VIGA-2do NIVEL	172	98.3%
10	VIGA VOLADO-2do NIVEL	166	94.9%
11	COLUMNA C1-3er NIVEL	168	96.0%
12	COLUMNA C2-3er NIVEL	175	100.0%
13	LOSA-3er NIVEL	166	94.9%
14	VIGA-3er NIVELL	161	92.0%
15	VIGA VOLADO-3er NIVEL	166	94.9%
16	COLUMNA C1-4to NIVEL	175	100.0%
17	COLUMNA C2-4to NIVEL	162	92.6%
18	LOSA-4to NIVEL	166	94.9%
19	VIGA-4to NIVEL	172	98.3%
20	VIGA VOLADO-4to NIVEL	172	98.3%

Susain Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Star Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Nro DE	TIPO DE ESTRUCTURA O ELEMENTO (VIVIENDA CH-4)	Lectura F´c	%
SERIE	,	(kg/cm2)	
			Calculado al
			tipo de
			concreto F´c
			175kg/cm2
1	COLUMNA C1-1er NIVEL	175	100.0%
2	COLUMNA C2-1er NIVEL	162	92.6%
3	LOSA-1er NIVEL	166	94.9%
4	VIGA-1er NIVEL	172	98.3%
5	VIGA VOLADO-1er NIVEL	172	98.3%
6	COLUMNA C1-2do NIVEL	168	96.0%
7	COLUMNA C2-2do NIVEL	175	100.0%
8	LOSA-2do NIVEL	166	94.9%
9	VIGA-2do NIVEL	172	98.3%
10	VIGA VOLADO-2do NIVEL	166	94.9%
11	COLUMNA C1-3er NIVEL	168	96.0%
12	COLUMNA C2-3er NIVEL	175	100.0%
13	LOSA-3er NIVEL	166	94.9%
14	VIGA-3er NIVELL	161	92.0%
15	VIGA VOLADO-3er NIVEL	166	94.9%
16	COLUMNA C1-4to NIVEL	175	100.0%
17	COLUMNA C2-4to NIVEL	162	92.6%
18	LOSA-4to NIVEL	166	94.9%
19	VIGA-4to NIVEL	172	98.3%
20	VIGA VOLADO-4to NIVEL	172	98.3%
21	COLUMNA C1-5to NIVEL	168	96.0%
22	COLUMNA C2-5to NIVEL	175	100.0%
23	LOSA-5to NIVEL	161	92.0%
24	VIGA-5to NIVEL	172	98.3%
25	VIGA VOLADO-5to NIVEL	172	98.3%

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Star Oscar Abraham Ortiz Jahn
ESP DE MECANICA DE SUELOS
Y PAVIMENTOS

		ESCLI	EROME	TRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO	DE HUAN	NCAYO,	PROVINC	IA HUANC	AYO, [DEPART	AMENTO
JUNÍN VIVIENDA HU-5							
Solicita : ANTONI JUN	IOR CUT	ISACA LA	AURA				
Fecha: 12/03/2020							
		ESCL	EROMET	RÍA			
COLUMNA C1-1er NI\	/EL						
						F'c	
Lecturas:	24	26	24	28	26	175	kg/cm2
Promedio Lectura:			26				
Zm=			175	kg/cm2	1111		100.0%
Ángulo			0°				100.070
COLUMNA C2-1er NI\	/EL						
			11 67			F'c	
Lecturas:	24	24	26	24	24	175	kg/cm2
Promedio Lectura:			24				
Zm=			162	kg/cm2			92.6%
Ángulo			0°				92.0%
LOSA-1er NIVEL	-						
						F'c	
Lecturas:	30	30	28	30	28	175	kg/cm2
Promedio Lectura:			29				
Zm=			166	kg/cm2			1
Ángulo			+90°	<u> </u>			94.9%
VIGA-1er NIVEL							
						F'c	
Lecturas:	28	30	28	30	32	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			00.20/
Ángulo			+90°	•			98.3%
VIGA VOLADO-1er NI	VEL						
						F'c	
Lecturas:	32	28	30	28	30	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			
ZIII-							98.3%

sta Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

		ESCLE	ROME	ria			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO E JUNÍN VIVIENDA HU-5	DE HUAN	CAYO, P	ROVINCI	A HUANCA	YO, DI	EPARTA	MENTO
Solicita : ANTONI JUNI	OR CUTIS	SACA LA	URA				
Fecha: 12/03/2020							
		ESCLE	ROMETE	RÍA			
COLUMNA C1-2do NIV	'EL						
		_		10		F'c	
Lecturas:	26	24	24	24	26	175	kg/cm2
Promedio Lectura:			25				
Zm=			168	kg/cm2			96.0%
Ángulo			0°				3 3.070
COLUMNA C2-2do NIV	EL					T _,	
			-	1		F'c	1. /
Lecturas:	24	28	24	28	26	175	kg/cm2
Promedio Lectura:			26	1. ,			
Zm=			175	kg/cm2			100.0%
Ángulo			0°				
LOSA-2do NIVEL						1	
ATT.						F'c	
Lecturas:	30	28	28	30	30	F'c 175	kg/cm2
Lecturas: Promedio Lectura:	30	28	29		30	_	kg/cm2
Lecturas: Promedio Lectura: Zm=	30	28	29 166	30 kg/cm2	30	_	kg/cm2
Lecturas: Promedio Lectura:	30	28	29		30	_	
Lecturas: Promedio Lectura: Zm= Ángulo	30	28	29 166		30	_	light.
Lecturas: Promedio Lectura: Zm=	30	28	29 166		30	175	light.
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL			29 166 +90°	kg/cm2		175	94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas:	30	28	29 166 +90°		30	175	
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura:			29 166 +90° 32 30	kg/cm2		175	94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm=			29 166 +90° 32 30 172	kg/cm2		175	94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura:			29 166 +90° 32 30	kg/cm2		175	94.9% kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	30		29 166 +90° 32 30 172	kg/cm2		175	94.9% kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm=	30		29 166 +90° 32 30 172	kg/cm2		175	94.9% kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	30		29 166 +90° 32 30 172 +90°	28 kg/cm2		F'c 175	94.9% kg/cm2 98.3%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	30 /EL	32	29 166 +90° 32 30 172	kg/cm2	28	175	94.9% kg/cm2 98.3%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-2do NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-2do NIV	30 /EL	32	29 166 +90° 32 30 172 +90°	28 kg/cm2	28	175	94.9% kg/cm2 98.3%

Susam Ortiz Casas INGENIERO CIVIL CIP. N° 85269

Star Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca @egistrada en il Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

		ESCL	EROME	ETRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRIT		JANCAY	O, PROVI	NCIA HUA	NCAYO	0,	
VIVIENDA HU-3 Solicita : ANTONI JU	INIOD	LITICAC	A LALIDA			-	
Fecha: 12/03/2020	MIORC	UTISACA	ALAUKA				
reciia. 12/03/2020		FSC	LEROME	ΓΡίΛ			
COLUMNA C1-1er N	IIVFI	LJC	LLINOIVIL	INA			
COLONIVA CI-ICI N						F'c	
Lecturas:	24	24	26	28	24		/cm2
Promedio Lectura:	<u> ۲</u>		25	20	47	1,2 18	, 01112
Zm=			168	kg/cm2			
Ángulo			0°	NB/ CITIZ		9	6.0%
Aliguio			U				
COLUMNA C2-1er N	IIV/FI						
COLONINA CZ-161 N	VLL					F'c	
Lecturas:	24	24	26	28	24		cm2
Promedio Lectura:	۷4		25	20	۷4	1/J NE	, CITIZ
Zm=			168	kg/cm2			
Ángulo			0°	NB/ CITIZ		9	6.0%
Aliguio			U				
LOSA-1er NIVEL							
LOUR ICI MIVEL						F'c	
Lecturas:	30	28	30	28	30		cm2
Promedio Lectura:	30	20	29	20	- 50	173 18	, стп
Zm=			166	kg/cm2			
Ángulo			+90°	D/ CITIZ		9	4.9%
, ₀ uio			. 50			I	
VIGA-1er NIVEL							
TION TO MIVE						F'c	
Lecturas:	30	28	28	30	32		cm2
Promedio Lectura:	30	20	30	50	32	1,2 KE	, 01112
Zm=			172	kg/cm2			
Ángulo			+90°	NB/ CITIZ		9	8.3%
Aliguio			130				
VIGA VOLADO 100	MIV/E1						
VIGA VOLADO-1er I	MIVEL					F'c	
Locturaci	20	32	20	30	20		/cm2
Lecturas:	28	32	30	30	30	175 kg	cm2
Promedio Lectura:			30	ka/cm2			
Zm=			172	kg/cm2		9	8.3%
Ángulo			+90°				

Susam Ortiz Casas INGENIERO CIVIL CIP. Nº 85269

Sta Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca ®egistrada en il Indecopi RESOLUCIÓN № 015082 - 2014 /DSD

		ESCL	EROME	ETRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO DEPARTAMENTO JU VIVIENDA HU-3		JANCAY	O, PROVI	NCIA HUA	NCAYO	Ο,	
Solicita : ANTONI JU	INIOR C	UTISACA	LAURA				
Fecha: 12/03/2020							
		ESC	LEROMET	ΓRÍA			
COLUMNA C1-2do N	NIVEL						1
						F'c	
Lecturas:	24	24	24	26	26	175	kg/cm2
Promedio Lectura:			25				
Zm=			168	kg/cm2			06.09/
Ángulo			0°			1	96.0%
COLUMNA C2-2do N	NIVEL						
						F'c	
Lecturas:	24	26	26	22	24	175	kg/cm2
Promedio Lectura:			24				
Zm=			162	kg/cm2			92.6%
Ángulo			0°				92.0%
LOSA-2do NIVEL							
						F'c	
Lecturas:	32	30	30	30	30	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			98.3%
Ángulo			+90°				JU.J/0
				71			
VIGA-2do NIVEL							
						F'c	
Lecturas:	30	32	30	28	28	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			98.3%
Ángulo			+90°				30.370
VIGA VOLADO-2do	NIVEL						
						F'c	
Lecturas:	28	30	28	30	28	175	kg/cm2
Promedio Lectura:			29				
Zm=			166	kg/cm2			94.9%
Ángulo			+90°			1	J4.J70

Susam Ortiz Casas
INGENIERO CIVIL
CIP N° 85269

Oscar Abraham Ortiz Jahn
ESP DE MECANICA DE SUELOS
Y PAVIMENTOS

		ESCL	EROME	ETRIA		
Proyecto de Tesis CONSTRUIDAS						
Ubicación : DISTRITO JUNÍN VIVIENDA HU-3	DE HUA	ANCAYO	, PROVIN	ICIA HUAN	ICAYO,	, DEPARTAMENTO
Solicita : ANTONI JUN	NIOR CU	TISACA	LAURA			
Fecha: 12/03/2020						,
		ESCI	LEROMET	ΓRÍA		
COLUMNA C1-3er NI	VEL					
						F'c
Lecturas:	24	26	28	24	24	175 kg/cm2
Promedio Lectura:			25			
Zm=			168	kg/cm2		96.0%
Ángulo			0°			30.070
COLUMNA C2-3er NI	VEL					1 .
						F'c
Lecturas:	24	26	28	28	26	175 kg/cm2
Promedio Lectura:			26			
Zm=			175	kg/cm2		100.0%
Ángulo			0°			
LOSA 2or NIVEL						
LOSA-3er NIVEL						E'c
	30	30	28	28	30	F'c
Lecturas:	30	30	28	28	30	F'c 175 kg/cm2
Lecturas: Promedio Lectura:	30	30	29		30	
Lecturas: Promedio Lectura: Zm=	30	30	29 166	28 kg/cm2	30	
Lecturas: Promedio Lectura:	30	30	29		30	175 kg/cm2
Lecturas: Promedio Lectura: Zm=	30	30	29 166		30	175 kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo	30	30	29 166		30	175 kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo	30	30	29 166		30	175 kg/cm2 94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL			29 166 +90°	kg/cm2		175 kg/cm2 94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas:			29 166 +90°	kg/cm2		175 kg/cm2 94.9% F'c 175 kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura:			29 166 +90° 28 28	kg/cm2		175 kg/cm2 94.9%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm=			29 166 +90° 28 28 161	kg/cm2		175 kg/cm2 94.9% F'c 175 kg/cm2
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm=	30		29 166 +90° 28 28 161	kg/cm2		175 kg/cm2 94.9% F'C 175 kg/cm2 92.0%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-3er NI	30 VEL	28	29 166 +90° 28 28 161 +90°	28 kg/cm2	28	175 kg/cm2 94.9% F'c 175 kg/cm2 92.0%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-3er NI Lecturas:	30		29 166 +90° 28 28 161 +90°	kg/cm2		175 kg/cm2 94.9% F'C 175 kg/cm2 92.0%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-3er NI Lecturas: Promedio Lectura:	30 VEL	28	29 166 +90° 28 28 161 +90°	28 kg/cm2	28	175 kg/cm2 94.9% F'c 175 kg/cm2 92.0%
Lecturas: Promedio Lectura: Zm= Ángulo VIGA-3er NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-3er NI Lecturas:	30 VEL	28	29 166 +90° 28 28 161 +90°	28 kg/cm2	28	175 kg/cm2 94.9% F'c 175 kg/cm2 92.0%

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca @egistrada en il Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

		ESCL	EROME	ETRÍA		
Proyecto de Tesis CONSTRUIDAS						
Ubicación : DISTRITO JUNÍN VIVIENDA ET-5	DE HUA	NCAYO	, PROVIN	ICIA HUAN	ICAYO	, DEPARTAMENTO
Solicita : ANTONI JUN	IIOR CU	TISACA	LAURA			1
Fecha: 13/03/2020						
· ·		ESCI	EROMET	ΓRÍA		7 III
COLUMNA C1-1er NIV	/EL					
				110		F'c
Lecturas:	28	26	26	24	24	175 kg/cm2
Promedio Lectura:			26			
Zm=			175	kg/cm2		100.00/
Ángulo			0°			100.0%
COLUMNA C2-1er NIV	/EL					
						F'c
Lecturas:	26	22	22	24	24	175 kg/cm2
Promedio Lectura:			24			
Zm=			162	kg/cm2		92.6%
Ángulo			0°			32.070
LOSA-1er NIVEL						
						F'c
Lecturas:	30	28	30	30	28	175 kg/cm2
Promedio Lectura:			29			
Zm=			166	kg/cm2		94.9%
Ángulo			+90°			
				100		
VIGA-1er NIVEL						le.
Lastrona	20	22	20	20	20	F'c
Lecturas:	30	32	30	28	28	175 kg/cm2
Promedio Lectura:			30	leg/size 2		
Zm=			172	kg/cm2		98.3%
Ángulo			+90°			
VICA VOLADO 100 NU	\/EI					
VIGA VOLADO-1er NI	VEL					F'c
Locturaci	20	22	20	20	20	
Lecturas:	30	32	28	30	30	175 kg/cm2
Promedio Lectura: Zm=			30 172	kg/cm2		
			+90°	kg/cm2		98.3%
Ángulo			+90			

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

		ESCL	EROME	ETRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO DEPARTAMENTO JU VIVIENDA ET-5		JANCAYO	O, PROVI	NCIA HUA	NCAYO	Ο,	
Solicita : ANTONI JU	NIOR C	UTISACA	LAURA				
Fecha: 13/03/2020							
		ESCI	LEROME	ΓRÍA			
COLUMNA C1-2do N	VIVEL						
				316		F'c	
Lecturas:	24	22	26	26	24	175	kg/cm2
Promedio Lectura:			24	4 1 -			
Zm=			162	kg/cm2			02.69/
Ángulo			0°				92.6%
COLUMNA C2-2do N	NIVEL	1,					
						F'c	
Lecturas:	22	26	24	22	24	175	kg/cm2
Promedio Lectura:			24	m. II			
Zm=			162	kg/cm2			00.551
Ángulo			0°				92.6%
LOSA-2do NIVEL							
A11						F'c	
Lecturas:	28	30	30	30	32	175	kg/cm2
Promedio Lectura:			30				,
Zm=			172	kg/cm2			
Ángulo			+90°	G,			98.3%
J							
VIGA-2do NIVEL							
						F'c	
Lecturas:	32	32	30	30	28	F'c 175	kg/cm2
	32	32		30	28		kg/cm2
Promedio Lectura:	32	32	30		28		kg/cm2
Promedio Lectura: Zm=	32	32	30 172	30 kg/cm2	28		kg/cm2
Promedio Lectura:	32	32	30		28		
Promedio Lectura: Zm= Ángulo		32	30 172		28		
Promedio Lectura: Zm= Ángulo		32	30 172		28	175	
Promedio Lectura: Zm= Ángulo VIGA VOLADO-2do	NIVEL		30 172 +90°	kg/cm2		175	98.3%
Promedio Lectura: Zm= Ángulo VIGA VOLADO-2do Lecturas:		32	30 172 +90°		28	175	
Promedio Lectura: Zm=	NIVEL		30 172 +90°	kg/cm2		175	98.3%

Susain Ortiz Casas Ingeniero Civil CIP. N° 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

		ESCLI	EROMI	ETRÍA		
Proyecto de Tesis CONSTRUIDAS						
Ubicación : DISTRITO JUNÍN	DE HUA	ANCAYO	, PROVIN	NCIA HUAN	ICAYO	, DEPARTAMENTO
VIVIENDA ET-5						
Solicita : ANTONI JUN	IIOR CU	TISACA	LAURA			1
Fecha: 13/03/2020						
		ESCL	EROME	ΓRÍA		
COLUMNA C1-3er NI	VEL					1993
				- 46		F'c
Lecturas:	24	26	24	26	22	175 kg/cm2
Promedio Lectura:			24			
Zm=			162	kg/cm2		92.6%
Ángulo			0°			32.070
COLUMNA C2-3er NI	VEL					1
						F'c
Lecturas:	24	24	26	28	26	175 kg/cm2
Promedio Lectura:			26			
Zm=			175	kg/cm2		100.0%
Ángulo			0°			
10010 1111/51						
LOSA-3er NIVEL						T _{et} .
Lasturas	20	20	20	20	20	175 kg/sm2
Lecturas: Promedio Lectura:	30	28	30 29	28	28	175 kg/cm2
Zm=			166	kg/cm2		
Ángulo			+90°	Kg/CIIIZ		94.9%
Aliguio			130			
VIGA-3er NIVEL						
VIGA SCI NIVEE						F'c
Lecturas:	30	28	28	30	30	175 kg/cm2
Promedio Lectura:			29			270 1.87 02
Zm=			166	kg/cm2		
Ángulo			+90°			94.9%
J						
VIGA VOLADO-3er Ni	VEL					
						F'c
Lecturas:	30	30	28	30	30	175 kg/cm2
Promedio Lectura:			30			
Zm=			172	kg/cm2		60.007
Ángulo			+90°			98.3%

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca @egistrada en il Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

		ESCL	EROME	TRÍA		
Proyecto de Tesis CONSTRUIDAS						
Ubicación : DISTRITO JUNÍN VIVIENDA ET-5	DE HU	ANCAYO	, PROVIN	ICIA HUAN	ICAYO	, DEPARTAMENTO
Solicita : ANTONI JUN	IIOR CU	TISACA	LAURA			
Fecha: 13/03/2020						
		ESC	LEROMET	RÍA		
COLUMNA C1-4to NIV	/EL					The second
				11		F'c
Lecturas:	28	24	26	28	24	175 kg/cm2
Promedio Lectura:			26			
Zm=			175	kg/cm2		100.0%
Ángulo			0°			100.070
COLUMNA C2-4to NIV	/EL					1
						F'c
Lecturas:	24	26	24	24	24	175 kg/cm2
Promedio Lectura:			24			
Zm=			162 0°	kg/cm2		92.6%
Ángulo			0-			
LOSA-4to NIVEL						
LOSA-410 IVIVEE						F'c
Lecturas:	30	28	28	30	28	175 kg/cm2
Promedio Lectura:	30	20	29	30	20	175 Kg/CI112
Zm=			166	kg/cm2		
Ángulo			+90°			94.9%
- mgane						
VIGA-4to NIVEL				10.7		
7 11 11						F'c
Lecturas:	30	30	28	30	32	175 kg/cm2
Promedio Lectura:			30			
Zm=			172	kg/cm2		09.20/
Ángulo			+90°			98.3%
VIGA VOLADO-4to NI	VEL					1
						F'c
Lecturas:	28	30	30	30	32	175 kg/cm2
Promedio Lectura:			30	I, , . I		
Zm=			172	kg/cm2		98.3%
Ángulo	osions:	. Fasts:	+90°	ridad 150/	N/ac h	l Annos
Observ	aciones	. ractor	ue segu	ridad 15%	ıvıas i\	rienos

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca Registrada en il Indecopi RESOLUCIÓN № 015082 - 2014 /DSD

		ESCLE	ROMET	ΓRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO E JUNÍN VIVIENDA CH-4	DE HUANC	AYO, PR	OVINCIA	A HUANCA	YO, DE	PARTAI	MENTO
Solicita : ANTONI JUNI	OP CLITIS	۸۲۸ ۱۸۱۱	IDΛ				
Fecha: 13/03/2020	OK COTIS	ACA LAU	nA .				
Techa. 15/05/2020		FSCLE	ROMETE	RÍΔ			
COLUMNA C1-1er NIVI	EL .						
				110		F'c	
Lecturas:	28	26	26	24	24	175	kg/cm2
Promedio Lectura:			26				
Zm=			175	kg/cm2			
Ángulo		1	0°				100.0%
-							
COLUMNA C2-1er NIVI	EL 🥠						
						F'c	
Lecturas:	26	24	26	24	24	175	kg/cm2
Promedio Lectura:			25				
Zm=			168	kg/cm2			06.00/
Ángulo			0°				96.0%
				<u> </u>			
LOSA-1er NIVEL							
All						F'c	
Lecturas:	30	28	30	30	30	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			98.3%
Ángulo			+90°				30.3%
				Ni .			
VIGA-1er NIVEL							
						F'c	
Lecturas:	30	28	28	30	30	175	kg/cm2
Promedio Lectura:			29				
Zm=			166	kg/cm2		_	94.9%
Ángulo			+90°				J4.J/0
VIGA VOLADO-1er NIV	EL					•	
				_		F'c	
Lecturas:	30	28	30	28	28	175	kg/cm2
Promedio Lectura:			29				
Zm=			166	kg/cm2		_	94.9%
Ángulo			+90°				J7.J/0

Susam Ortiz Casas INGENIERO CIVIL CIP. N° 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

		ESCLE	ROMET	ΓRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO E JUNÍN VIVIENDA CH-4	E HUANC	CAYO, PR	OVINCIA	A HUANCA	YO, DE	PARTAI	MENTO
Solicita : ANTONI JUNI	OR CUTIS	ACA LAU	IRA				
Fecha: 13/03/2020							
		ESCLE	ROMETE	RÍΑ			
COLUMNA C1-2do NIV	EL						10000
				37.6		F'c	
Lecturas:	26	28	26	28	26	175	kg/cm2
Promedio Lectura:			27				
Zm=			182	kg/cm2			104.0%
Ángulo			0°				10 1.070
COLUMNA C2-2do NIV	EL						
						F'c	
Lecturas:	26	28	24	26	26	175	kg/cm2
Promedio Lectura:			26	1			
Zm=			175	kg/cm2			100.0%
Ángulo			0°				
LOSA-2do NIVEL							
LOJA-ZUU INIVEL						F'c	
Lecturas:	30	32	30	30	30	175	kg/cm2
Promedio Lectura:	30	32	30	30	30	1/3	Kg/CIIIZ
Zm=			172	kg/cm2			
Ángulo			+90°	Ng/CIIIZ		1	98.3%
Aliguio			130			1	
VIGA-2do NIVEL							
TION END HIVEE						F'c	
Lecturas:	30	30	30	28	28	175	kg/cm2
Promedio Lectura:	30	30	29	20		1 -73	NO/ CITIZ
Zm=			166	kg/cm2		†	
Ángulo			+90°			1	94.9%
J							
VIGA VOLADO-2do NI\	/EL						
	-					F'c	
Lecturas:	28	28	30	30	28	175	kg/cm2
Promedio Lectura:			29			+	
Zm=			166	kg/cm2		†	
			00	0/ 51112		4	94.9%

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca Registrada en il Indecopi RESOLUCIÓN № 015082 - 2014 /DSD

]	ESCLE	ROMET	ΓRÍA			
Proyecto de Tesis CONSTRUIDAS							
Ubicación : DISTRITO [IUNÍN	DE HUANC	CAYO, PR	OVINCIA	A HUANCA	YO, DE	PARTAI	MENTO
VIVIENDA CH-4	00 01 ITIS						
Solicita : ANTONI JUNI	OR CUTIS	ACA LAU	KA		-		
Fecha: 13/03/2020		FCCLF	ROMETR	ní a			
COLUMNA C1-3er NIV		ESCLE	KOWETA	IA			
COLUMNA C1-3er NIV	EL					F'c	
Locturaci	20	26	26	26	26	+	kg/cm2
Lecturas: Promedio Lectura:	28	26	26	26	26	175	kg/cm2
	+		26 175	kg/cm2			
Zm=			175	kg/cm2		-	100.0%
Ángulo			0°				
COLLINANIA CO O CIDIO	-1						
COLUMNA C2-3er NIV	tL .					FI.	
Locturaci	20	24	24	26	24	F'c	kg/cm2
Lecturas:	28	24	24	26	24	175	kg/cm2
Promedio Lectura:			25	11 2			
Zm=			168	kg/cm2			96.0%
Ángulo			0°				
LOCA 2or NIVEL							
LOSA-3er NIVEL						F'c	
Lastumas	20	22	20	20	20		1.5/552
Lecturas:	30	32	28	28	30	175	kg/cm2
Promedio Lectura:			30	1/2			
Zm=			172	kg/cm2		-	98.3%
Ángulo			+90°				
VIGA-3er NIVEL						T	
			-			F'c	I. , -
Lecturas:	30	30	32	28	30	175	kg/cm2
Promedio Lectura:			30	1, , ,		_	
Zm=			172	kg/cm2		4	98.3%
Ángulo			+90°				
VIGA VOLADO-3er NIV	EL					T	
						F'c	ı
Lecturas:	32	30	28	28	30	175	kg/cm2
Promedio Lectura:			30				
Zm=			172	kg/cm2			98.3%
Ángulo			+90°				JU.J/0

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

	I	ESCLEI	ROMET	RÍA		
Proyecto de Tesis CONSTRUIDAS						
Ubicación : DISTRITO D	E HUANC	AYO, PR	OVINCIA	HUANCAY	O, DEP	ARTAMENTO
JUNÍN VIVIENDA CH-4						
Solicita : ANTONI JUNIO	OR CUTISA	ACA LAU	RA		1	
Fecha: 13/03/2020						
		ESCLE	ROMETRÍ	A		
COLUMNA C1-4to NIVE	L					100
				11		F'c
Lecturas:	24	26	26	24	24	175 kg/cm2
Promedio Lectura:			25			
Zm=			168	kg/cm2		96.0%
Ángulo			0°			90.076
COLUMNA C2-4to NIVE	L					
						F'c
Lecturas:	24	24	24	24	26	175 kg/cm2
Promedio Lectura:			24			
Zm=			162	kg/cm2		92.6%
Ángulo			0°			32.070
LOSA-4to NIVEL				_		
						F'c
Lecturas:	30	28	26	28	30	175 kg/cm2
Promedio Lectura:			28			
Zm=			161	kg/cm2		197
Ángulo			+90°			92.0%
J						
VIGA-4to NIVEL						
						F'c
Lecturas:	30	28	28	30	28	175 kg/cm2
Promedio Lectura:			29			5,
Zm=			166	kg/cm2		
Ángulo			+90°	<u>.</u>		94.9%
VIGA VOLADO-4to NIV	EL					
						F'c
Lecturas:	30	30	28	30	30	175 kg/cm2
Promedio Lectura:			30		1	
Zm=			172	kg/cm2		
	+		+90°	٠,٠		98.3%

Susam Ortíz Casas INGENIERO CIVIL CIP. Nº 85269

Dia Oscar Abraham Ortiz Jahn ESP DE MECANICA DE SUELOS Y PAVIMENTOS

		ES	SCLE	ROMET	ΓRÍA			
Proyecto de Tesis : CONSTRUIDAS E								
Ubicación : DISTRITO DE JUNÍN VIVIENDA CH-4	HUAN	CA	YO, PR	OVINCIA	A HUANCA	YO, DE	PARTAI	MENTO
Solicita : ANTONI JUNIO	R CUTIS	SAC	CA LAU	IRA				
Fecha: 13/03/2020								
			ESCLE	ROMETR	RÍA			
COLUMNA C1-5to NIVEL								
					110		F'c	
Lecturas:	24		26	26	26	24	175	kg/cm2
Promedio Lectura:				25				
Zm=				168	kg/cm2			06.09/
Ángulo				0°				96.0%
COLUMNA C2-5tor NIVE	L							
							F'c	
Lecturas:	26	\prod	26	26	28	26	175	kg/cm2
Promedio Lectura:				26				
Zm=				175	1ca /om 2			
		_		1/3	kg/cm2			100 00/
Ángulo				0°	Kg/CIIIZ			100.0%
Ángulo					kg/cm2			100.0%
Ángulo LOSA-5to NIVEL					квусти			100.0%
					kg/cmz		F'c	100.0%
	26		30		26	32	F'c 175	
LOSA-5to NIVEL	26		30	0°		32		
LOSA-5to NIVEL Lecturas:	26	I	30	0°		32		kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura:	26		30	0° 28 28	26	32		
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm=	26	I	30	0° 28 28 161	26	32		kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm=	26		30	0° 28 28 161	26	32		kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	26	I	30	0° 28 28 161	26	32		kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	26	I	30	0° 28 28 161	26	32	175	kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL		I		0° 28 28 161 +90°	26 kg/cm2		175	kg/cm2 92.0%
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas:				0° 28 28 161 +90°	26 kg/cm2		175	92.0% kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura:				0° 28 28 161 +90° 28 30	26 kg/cm2		175	kg/cm2 92.0%
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm=				28 28 161 +90° 28 30 172	26 kg/cm2		175	92.0% kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm=	30			28 28 161 +90° 28 30 172	26 kg/cm2		175	92.0% kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	30			28 28 161 +90° 28 30 172	26 kg/cm2		175	92.0% kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo	30			28 28 161 +90° 28 30 172	26 kg/cm2		F'c 175	92.0% kg/cm2
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-5to NIVE	30 L		28	28 28 161 +90° 28 30 172 +90°	26 kg/cm2	32	F'c 175	92.0% kg/cm2 98.3%
LOSA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA-5to NIVEL Lecturas: Promedio Lectura: Zm= Ángulo VIGA VOLADO-5to NIVE	30 L		28	28 28 161 +90° 28 30 172 +90°	26 kg/cm2	32	F'c 175	92.0% kg/cm2 98.3%

Susain Ortiz Casas INGENIERO CIVIL CIP. Nº 85269

Oscar Abraham Ortiz Jahn

Prohibida la copia total o parcial de este documento | derecho de propiedad intelectual y Marca Registrada en il Indecopi RESOLUCIÓN Nº 015082 - 2014 /DSD

ANEXO 8: MÉTODOS DE REFORZAMIENTO ESTRUCTURAL EN COLUMNAS DE PÓRTICOS DE CONCRETO ARMADO Y MUROS PORTANTES DE ALBAÑILERÍA CONFINADA

MÉTODOS DE REFORZAMIENTO ESTRUCTURAL

COLUMNAS DE PÓRTICOS DE CONCRETO ARMADO

MUROS PORTANTES DE ALBAÑILERÍA CONFINADA

Reforzamiento mediante encamisado con hormigón

Reforzamiento mediante mallas poliméricas

Reforzamiento mediante fibras de carbono (CFRP) Reforzamiento mediante varillas de fibra de vidrio

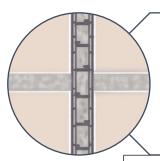
Reforzamiento mediante fibras de carbono (Mbrace CF130)

A. REFORZAMIENTO ESTRUCTURAL DE COLUMNAS DE PÓRTICOS DE CONCRETO ARMADO

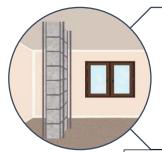
A.1 REFORZAMIENTO MEDIANTE ENCAMISADO CON HORMIGÓN

FUENTE

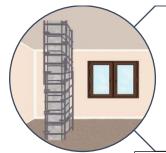
SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.


La técnica del enchaquetado o encamisado de elementos existentes con adición de nuevo concreto reforzado es una estrategia ventajosa para proporcionar más alta resistencia, así como para aumentar la rigidez por lo cual debe haber contacto entre el encamisado y la losa o viga.

PROCESO DE INSTALACIÓN


1. Remoción del recubrimiento actual, hasta que sea visible el refuerzo de acero existente.

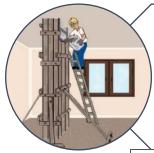
FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.



2. Realizar perforaciones en la losa para el paso de varillas de refuerzo.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

3. Inclusión de varillas longitudinales de acuerdo a planos especificos.


4. Colocar estribos de refuerzo.

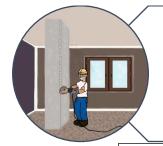
FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

5. Relleno de orificios realizados en el entrepiso con epóxico estructural.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

6. Encofrar las columnas y fundir la nueva sección.

A.2 REFORZAMIENTO MEDIANTE FIBRAS DE CARBONO (CFRP)



SILVA CASTILLO, JORGE BRYAN. GUIA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

FINALIDAD

Aumentar la rigidez de las columnas y es un material que se caracteriza por su alta resistencia al impacto. Cuando las condiciones arquitectónicas no permitan realizar un encamisado con el crecimiento de la sección de concreto armado se utiliza esta opción.

PROCESO DE INSTALACIÓN

1. Redondear las esquinas de la seccion existente.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

2. Mezclar los componentes del epóxico estructural.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

3. Resanar posibles fallas en la sección existente usando el epóxico estructural.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

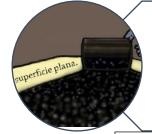
4. Mezclar el componente A y B de un mortero de reparación.

5. Incorporar el tercer componente C del mortero de reparación.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

6. Realizar la mezcla hasta obtener una composición homogénea, tiempo estimado de 3 minutos.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO, TESIS ÍTITULO DE INGENIERO CIVILI, SALGOLQUI, 2017.


7. Colocar una capa del mortero de reparación sobre la superficie de la sección existente, dentro del tiempo de vida útil de la mezcla (apróx. 60mins)

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

8. Medir el espesor de la columna adicionando aproximadamente 15cm para el traslape de la fibra.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO, TESIS ÍTITULO DE INGENIERO CIVILI, SALGOLQUI, 2017.

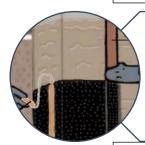
9. Colocar el tejido sikawrap 600 sobre una superficie plana que permita su fácil manipulación

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

10. Cortar el número de piezas necesarias según la altura de la columna a reforzar.

11. Mezclar los componentes de la resina epóxica adhesiva, esta servirá para la adherencia del tejido CFRP

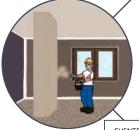
FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI. 2017.


12. Batir los componentes hasta alcanzar una mezcla homogénea. tiempo de 3 minutos como mínimo.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLOUI. 2017.

13. Aplicar con rodillo una capa de resina epóxica adhesiva sobre la superficie del elemento a reforzar, para permitir la adherencia del tejido CFRP.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS ÍTITULO DE INGENIERO CIVIL). SALGOLQUI. 2017.


14. Colocar el tejido CFRP, ayudándose de un rodillo para la adherencia y un tubo para desenrollar de a poco el tejido previamente cortado.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI. 2017.

15. Pasar el rodillo para fijar el tejido de CFRP a la resina epóxica adhesiva. esto se realizar para asegurar la correcta aplicación del refuerzo.

FUENTE: SILVA CASTILLO, JORGE BRYAN. GUÍA DE REFORZAMIENTO PARA ESTRUCTURAS INFORMALES APORTICADAS SEGÚN ESTUDIO DE VULNERABILIDAD EN EL DISTRITO METROPOLITANO DE QUITO. TESIS (TITULO DE INGENIERO CIVIL). SALGOLQUI, 2017.

16. Colocar una nueva capa de resina epóxica adhesiva sobre la fibra del tejido CFRP con el fin de no dejarla totalmente expuesta a la intemperie. Además, Espolvorear sobre la columna productos cementicios para dar un acabado estético mejorado.

B. REFORZAMIENTO ESTRUCTURAL DE MUROS PORTANTES DE ALBAÑILERÍA CONFINADA

B.1 REFORZAMIENTO MEDIANTE MALLAS POLIMÉRICAS

FUENTE

TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

FINALIDAD

Consiste en la aplicación de una capa superficial de refuerzo en una o ambas caras del muro de mampostería con la finalidad de mejorar su capacidad resistente a fuerzas sísmicas coplanares y transversales al plano y proveer continuidad entre muros ortogonales sin perjuicio de su capacidad portante.

PROCESO DE INSTALACIÓN

1. Eliminar la pintura superficial y picado del muro.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

2. Resanar superficialmente la pared para dejar una superficie sin protuberancias o hendiduras..

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

3. Medir la longitud de la pared en forma continua ya sea interior o exteriormente incluyendo las vueltas que se puedan hacer.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

4. Cortar la malla de acuerdo a la medición de la pared en una superficie plana.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.


5. Presentar la malla en la pared y fijarla con alcayatas cada 50cm aproximadamente..

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

6. Preparar la pared mojando con agua y luego una lechada de cemento.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

7. Preparar la mezcla para el mortero con cemento/arena 1/5. En todo caso se requiere un mortero que tenga una resistencia de 70kg/cm2. Pañetear la pared y asegurarse que la malla quede embebida en el espesor del mortero.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO, 2014.

8. Tarrajear la pared para dar una superficie lisa, luego colocar imprimante y pintar.

FUENTE: TORREALVA, DANIEL. GUÍA PARA LA EVALUACIÓN Y REFUERZO DE VIVIENDAS INFORMALES DE MAMPOSTERÍA DE LADRILLO
PARA REDUCIR SU VULNERABILIDAD SÍSMICA - TÉCNICA DEL MORTERO REFORZADO CON MALLAS POLIMÉRICAS. LIMA: SENCICO. 2014.

B.2 REFORZAMIENTO MEDIANTE VARILLAS DE FIBRA DE VIDRIO

FUENTE

J. GUSTAVO TUMIALAN, ANGEL SAN BARTOLOME Y ANTONIO NANNI. COMPORTAMIENTO SÍSMICO DE TABIQUES REFORZADOS CON VARILLAS DE FIBRA DE VIDRIO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

FINALIDAD

Las varillas de fibra de vidrio pueden constituir una solución viable, no solo por sus buenas propiedades mecánicas, sino por su bajo costo de instalación, su alta resistencia a la corrosión y también porque las dimensiones del muro a reforzar no varían. Los muros reforzados con varillas de fibra de vidrio pueden alcanzar distorsiones de0.7% sin perder su capacidad resistente a carga lateral.

PROCESO DE INSTALACIÓN

1. Usando una amoladora se hace una ranura en el mortero.

FUENTE: J. GUSTAVO TUMIALAN, ÁNGEL SAN BARTOLOMÉ Y ANTONIO NANNI. COMPORTAMIENTO SÍSMICO DE TABIQUES REFORZADOS CON VARILLAS DE FIBRA DE VIDRIO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

2. Aplicar una capa de epóxico.

FUENTE: J. GUSTAVO TUMIALAN, ÁNGEL SAN BARTOLOMÉ Y ANTONIO NANNI. COMPORTAMIENTO SÍSMICO DE TABIQUES REFORZADOS CON VARILLAS DE FIBRA DE VIDRIO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

3. Embutir la varilla en la junta.

FUENTE: J. GUSTAVO TUMIALAN, ÁNGEL SAN BARTOLOMÉ Y ANTONIO NANNI. COMPORTAMIENTO SÍSMICO DE TABIQUES REFORZADOS CON VARILLAS DE FIBRA DE VIDRIO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

4. Enrasar el epóxico, para asegurar una adherencia apropiada entre el epóxico y la albañilería, es necesario limpiar el polvo con aire comprimido antes de aplicar el epóxico.

FUENTE: J. GUSTAVO TUMIALAN, ÁNGEL SAN BARTOLOMÉ Y ANTONIO NANNI. COMPORTAMIENTO SÍSMICO DE TABIQUES REFORZADOS CON VARILLAS DE FIBRA DE VIDRIO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

B.3 REFORZAMIENTO MEDIANTE FIBRAS DE CARBONO (MBRACE CF 130)

FUENTE

ÁNGEL SAN BARTOLOMÉ Y CRISTHIAN CORONEL. REPARACIÓN Y REFORZAMIENTO DE UN MURO DE ALBAÑILERÍA CONFINADA MEDIANTE FIBRA DE CARBONO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

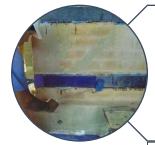
FINALIDAD

Resanar y adicionar exteriormente fibras de carbono (Mbrace CF130) a un muro de albañilería confinada, que previamente había fallado por fuerza cortante en un experimento de carga lateral cíclica

PROCESO DE INSTALACIÓN

1. Recortar la fibra de carbono, de acuerdo a las medidas del muro y formar bandas con un ancho de 10cm, esmerilar las zonas del muro a reforzar y marcación con ocre las zonas donde se ubicarán las bandas.

FUENTE: ÁNGEL SAN BARTOLOMÉ Y CRISTHIAN CORONEL. REPARACIÓN Y REFORZAMIENTO DE UN MURO DE ALBAÑILERÍA CONFINADA MEDIANTE FIBRA DE CARBONO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ. 2007.


2. Aplicar el imprimante Mbrace Primer con un rodillo sobre la superficie seca y limpia donde van las bandas, después sellar con una espátula las imperfecciones con la pasta Mbrace Putty.

FUENTE: ÁNGEL SAN BARTOLOMÉ Y CRISTHIAN CORONEL. REPARACIÓN Y REFORZAMIENTO DE UN MURO DE ALBAÑILERÍA CONFINADA MEDIANTE FIBRA DE CARBONO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

3. Aplicar la resina Mbrace Saturant empleando un rodillo, después instalar la fibra de carbono y pasarle un rodillo acanalado en la dirección longitudinal hasta notar el sangrade del Mbrace Saturant a través de la fibra.

FUENTE: ÁNGEL SAN BARTOLOMÉ Y CRISTHIAN CORONEL. REPARACIÓN Y REFORZAMIENTO DE UN MURO DE ALBAÑILERÍA CONFINADA MEDIANTE FIBRA DE CARBONO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, 2007.

4. Finalmente volver a aplicar otra capa deMbrace Saturant para que la fibra de carbono quede encapsulada.

FUENTE: ÁNGEL SAN BARTOLOMÉ Y CRISTHIAN CORONEL. REPARACIÓN Y REFORZAMIENTO DE UN MURO DE ALBAÑILERÍA CONFINADA MEDIANTE FIBRA DE CARBONO. LIMA: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ. 2007.