

SÍLABO Máquinas Térmicas

Código	ASUC01403		Carácter	Obligatorio
Prerrequisito	Termodinámica 1			
Créditos	3 créditos			
Horas	Teóricas	2	Prácticas	2
Año académico	2022			

I. Introducción

Máquinas Térmicas es una asignatura obligatoria de especialidad, se ubica en el sexto periodo académico de la Escuela Académico Profesional de Ingeniería Eléctrica; tiene como prerrequisito la asignatura de Termodinámica 1 y es prerrequisito de la asignatura de Centrales de Generación. Con esta asignatura se desarrollan, en un nivel intermedio, la competencia transversal Conocimientos de Ingeniería, y, en un nivel inicial, las competencias transversales Medioambiente y Sostenibilidad y Gestión de Proyectos.

Los contenidos generales que la asignatura desarrolla son los siguientes: Clasificación de las máquinas térmicas, transferencia de energía, aplicación de la ecuación de Euler en las turbinas; Leyes de semejanza, selección de turbinas, pérdidas, saltos entálpicos, rendimientos y potencias de las turbinas.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de aplicar los conocimientos de las máquinas térmicas usadas en las plantas y centrales generadoras de energía eléctrica para proponer alternativas de generación con energía renovable frente a los problemas de cambio climático del Perú y el mundo. Asimismo, el estudiante desarrollará la capacidad de comprender el impacto de las soluciones de la ingeniería en un contexto global, económico, ambiental y de la sociedad.

III. Organización de los aprendizajes

Unidad 1 Duración Introducción a las máquinas térmicas en horas				
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de describir el comportamiento de las leyes de la termodinámica, de usar tablas y diagramas de propiedades del vapor, aire y gas, y de comprender los diversos tipos de plantas térmicas usadas teniendo en cuenta los procesos de combustión.			
Ejes temáticos	Leyes de la termodinámica Propiedades del vapor, aire y gas Tipos de plantas térmicas Procesos de combustión			

Plantas	Duración en horas	16	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de explicar el principio de funcionamiento, eficiencias, costos e impacto ambiental de la diversas plantas de generación identificando la Influencia de la presiones y temperaturas.		
Ejes temáticos	 Análisis del ciclo Rankine Análisis del Ciclo Brayton Componentes principales y auxiliares de la p Descripción clasificación y Curvas caracterís 		

Unidad 3 Duración Plantas térmicas con motores de combustión interna en horas				
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de aplicar la metodología adecuada para realizar un estudio de implementación de una central térmica acorde con los parámetros de la generación térmica.			
Ejes temáticos	 Análisis de los ciclos teóricos de los motores de combustión interr Análisis de ciclos reales Componentes y partes principales de los motores de combustió Influencia de la variación de carga y regulación 			

Unidad 4 Duración Análisis comparativo de las plantas térmicas en horas					
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de aplicar el proceso y los parámetros del diseño de centrales térmicas acordes con la normativa actual sobre el uso de recursos renovables para la generación de electricidad (Ley RER 29157) y el impacto ambiental.				
	Desde el punto de vista de la eficiencia, costo de operación				
Ejes temáticos	2. Desde el punto de vista de la potencia, costo inicial3. Desde el punto de vista del mantenimiento				
,	Desde el punto de vista del funcionamiento a carga parcial, criterios de selección aplicación a casos particulares (discusión)				

IV. Metodología

Modalidad presencial

En el desarrollo de la asignatura se aplicará una metodología activa dentro de un enfoque participativo, reflexivo y crítico. Los estudiantes serán quienes construyan su aprendizaje a través del estudio de casos concretos y específicos en empresas e industrias, debate de los análisis de lecturas y videos, problemas prácticos para resolver en clase, las exposiciones dialogadas, ejemplificaciones, análisis de casos, técnicas participativas y de aprendizaje colaborativo. Se desarrollarán actividades programadas en el aula virtual.

Durante las sesiones, se guiará a los estudiantes a través del método del aprendizaje cooperativo, aprendizaje basado en problemas y el método de casos.

Modalidad semipresencial

En el desarrollo de la asignatura se aplicará una metodología activa dentro de un enfoque participativo, reflexivo y crítico. Los estudiantes serán quienes construyan su aprendizaje a través del estudio de casos concretos y específicos en empresas e industrias, del debate de los análisis de lecturas y videos, la resolución de problemas prácticos en clase, las exposiciones dialogadas, ejemplificaciones, análisis de casos, técnicas participativas y de aprendizaje colaborativo. Se desarrollarán actividades programadas en el aula virtual.

Durante las sesiones, se guiará a los estudiantes a través del método del aprendizaje cooperativo, el aprendizaje basado en problemas y el método de casos.

V. Evaluación

Modalidad presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórico- práctica / Prueba objetiva	Requisito
Consolidado	1	Semana 1 - 4	Evaluación individual teórico- práctica/ Prueba mixta	20 %
C1	2	Semana 5 - 7	Resolución de ejercicios de estudio de casos / Rubrica de evaluación	20 %
Evaluación parcial EP	1 y 2	Semana 8	Exposición grupal / Ficha de evaluación	25 %
Consolidado	3	Semana 9 - 12	Evaluación individual teórico- práctica/ Prueba de desarrollo	

2 C2	4	Semana 13 - 15	Redacción de ensayo / Rubrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 16	Elaboración de proyecto / Rubrica de evaluación	35 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

Modalidad semipresencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórico- práctica/ Prueba objetiva	0 %
Consolidado 1	1	Semana 1 - 3	Exposición grupal / Rúbrica de Evaluación	20 %
Evaluación parcial EP	1 y 2	Semana 4	Resolución de ejercicios de estudio de casos / Rúbrica de evaluación	25 %
Consolidado 2 C2	3	Semana 5 - 7	Exposición grupal / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual teórico-práctica / Rúbrica de evaluación	35 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

Fórmula para obtener el promedio

VI. Bibliografía

Básica

Cengel, Y., Boles, M. (2019). Termodinámica. (9.a ed.). McGraw-Hill. https://bit.ly/3CHCeiH

Complementaria

Mataix, C. y Arenas, A. (2009). Turbomáquinas hidráulicas: turbinas hidráulicas, bombas y ventiladores (2.ª ed.). Universidad Pontificia Comillas.

Muñoz, M., y Rovira de Antonio, A. (2014). *Máquinas térmicas*. Universidad Nacional de Educación a Distancia.

VII. Recursos digitales

Fernández, I., Pérez, S., y Renedo, C. (s.f.). Termodinámica y máquinas térmicas: tema 01 conceptos fundamentales [Diapositiva de PowerPoint]. Universidad de Cantabria. Recuperado el 7 de agosto de 2020, de https://bit.ly/3kwvb4H

Redsauce. (s.f.). Recuperado el 7 de agosto de 2020, de https://redsauce.net/es

Thermoptim [Software de computadora]. (s.f.). Recuperado el 7 de agosto de 2020, de https://direns.mines-paristech.fr/Sites/Thopt/en/co/presentation-thermoptim-1.html

Thermoptim-UNIT. (s.f.). \$24ES Modelo de una turbina a gas simple. Recuperado el 7 de agosto de 2020, de https://direns.mines-paristech.fr/Sites/Thopt/es/co/s24es-modelo-una-turbina-es.html