

SÍLABO Termodinámica 2

Código	ASUC01607	7	Carácter	Obligatorio		
Prerrequisito	Termodiná	Termodinámica 1				
Créditos	4	4				
Horas	Teóricas	2	Prácticas	4		
Año académico	2022					

I. Introducción

Termodinámica 2 es una asignatura obligatoria de especialidad, se ubica en el sexto periodo académico de la Escuela Académico Profesional de Ingeniería Mecánica; tiene como prerrequisito la asignatura de Termodinámica 1. Con esta asignatura se desarrolla en un nivel intermedio la competencia transversal Conocimiento de Ingeniería. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de la termodinámica aplicada.

Los contenidos generales que la asignatura desarrolla son los siguientes: Energía. Combustión. Ciclo Clausius-Ranking. Ciclo Joule Brayton. Ciclo en motores de combustión interna (Otto, Diesel, Dual). Ciclo de refrigeración y aplicaciones de psicrometría.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de aplicar los conceptos de la termodinámica en la solución de problemas de Ingeniería.

III. Organización de los aprendizajes

Combu	Duración en horas	24				
Resultado de aprendizaje de la unidad	procesos y ciclos de combustión interna aplicad	Al finalizar la unidad, el estudiante será capaz de relacionar los procesos y ciclos de combustión interna aplicados en el campo de la ingeniería, demostrando eficiencia en la solución de problemas en máquinas térmicas de la industria.				
Ejes temáticos	 Procesos de combustión ideal y real Entalpias, primera ley y entropía en sistemas reactivos Ciclo de Carnot Ciclo Otto 					

Unidad 2 Ciclo de combustión interna y ciclo de potencia a gas ciclo Brayton en horas					
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de analizar los ciclos Diesel y Brayton, el diagrama de sus componentes, diagrama de procesos, balance energético y parámetros de eficiencia en aplicaciones de ingeniería, demostrando exactitud, precisión y eficiencia en la solución de problemas en máquinas térmicas de la industria.				
Ejes temáticos	 Ciclo Diesel Ciclo Brayton Ideal Ciclo Brayton con regeneración Ciclo Brayton con recalentamiento, co interenfriamiento 	n regener	ación e		

Ciclo de pot	Duración en horas	24			
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de evaluar el principio de funcionamiento en los ciclos termodinámicos de potencia, considerando sus principales componentes y evaluando su eficiencia y potencia.				
Ejes temáticos	 Análisis de energía de ciclo Rankine ideal y real Ciclo Rankine ideal con recalentamiento Ciclo Rankine ideal con regeneración Ciclo invertido de Carnot 				

Ciclos d	Duración en horas	24		
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de aplicar las leyes termodinámicas en los ciclos de refrigeración y aire acondicionado y en la mezcla de gases existentes en la industria nacional e internacional y su implicancia en el desarrollo del país, siguiendo los lineamientos planteados con claridad y criterio.			
Ejes temáticos	 Ciclo de refrigeración por compresión de vapor ideal y real Ciclo de refrigeración gas y sistema de refrigeración por absorción Mezcla de gases y mezcla de gas-vapor Procesos de acondicionamiento de aire 			

IV. Metodología

Modalidad Presencial

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes y promoviendo su participación de manera constante. Para el desarrollo de la asignatura, se utilizarán los siguientes métodos:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en problemas
- Aprendizaje orientado en proyectos
- Clase magistral activa
- Flipped classroom
- Otros

Modalidad semipresencial

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes y promoviendo su participación de manera constante. Para el desarrollo de la asignatura, se utilizarán los siguientes métodos:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje orientado en proyectos
- Aprendizaje basado en problemas
- Clase magistral activa
- Otros

V. Evaluación

Modalidad presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %
Consolidado	1	Semana 3	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
C1	2	Semana 6	Evaluación individual escrito teórico- práctica / Prueba de desarrollo	
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
Consolidado	3	Semana 11	Proyecto grupal / Rúbrica de evaluación	20 %
2 C2	4	Semana 14	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual escrito teórico- práctica/ Prueba de desarrollo (50 %) Proyecto final de asignatura / Rúbrica de evaluación (50 %)	40 %
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a EF	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad semipresencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %	
Consolidado			Actividades virtuales	15 %	
Consolidado 1 C1	1	Semana 1-3	Evaluación individual escrito teórico-práctica / Prueba de desarrollo	85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual escrito teórico-práctica / Prueba de desarrollo	20 9	%
Consolidado			Actividades virtuales	15 %	
2 C2	3	Semana 5-7	Evaluación individual escrito teórico-práctica / Prueba de desarrollo	85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual escrito teórico-práctica/ Prueba de desarrollo (50 %) Proyecto final de asignatura / Rúbrica de evaluación (50 %)	40 %	
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a EF	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

VI. Bibliografía

Básica

Cengel, Y., Boles, M. y Kanoglu, M. (2019). *Termodinámica* (9.ª ed.). McGraw-Hill Interamericana. https://bit.ly/3pivwKf

Complementaria

Potter, M., Somerton, C., y de Assas, P. (2004). *Termodinámica para ingenieros*. McGraw-Hill Morán, M., y Shapiro, H. (2012). Fundamentos de termodinámica técnica (2.ª ed.). Reverté.

VII. Recursos digitales

- Garcia, G. (16 de julio de 2017). Ejercicio 2 Primera Ley Volúmenes de Control Clase Termodinámica [Video]. YouTube. https://www.youtube.com/watch?v=vPzGHTcb2Rw
- Garcia, G. (2 de mayo de 2017). La Segunda Ley de la Termodinámica Parte 1 (Enunciado Kelvin-Planck) – Clase 13 Termodinámica [Video]. YouTube. https://www.youtube.com/watch?v=rPr-ORyYGr8
- Dirección de educación online. (9 de julio de 2019). Ciclo Brayton [Video]. YouTube. https://www.youtube.com/watch?v=jzezy Y5Lq8
- Heysoymarvin. (7 de marzo de 2018). Ciclo Rankine ¿cómo funciona una planta termoeléctrica [Video]. YouTube. https://www.youtube.com/watch?v=Z1kf-Ad1Uos