

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Industrial

Tesis

Propuesta de rutas optimizadas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018

Frank Antony Rivera Rodríguez

Para optar el Título Profesional de Ingeniero Industrial

Huancayo, 2019

Repositorio Institucional Continental Tesis digital

Obra protegida bajo la licencia de Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú

ASESOR

Javier Romero Meneses

AGRADECIMIENTO

Agradezco a la Universidad Continental por la formación académica brindada, para ser un profesional competente y con valores dentro de la sociedad.

A la Municipalidad Provincial de Jauja por facilitarme la información necesaria para realizar la investigación.

A mi asesor Javier Romero Meneses por brindarme el apoyo y los conocimientos para lograr el desarrollo de la investigación.

Finalmente agradezco a todas las personas que me alentaron a culminar este trabajo, especialmente para mi novia, Lorena, que siempre estuvo presente para brindarme su apoyo incondicional a pesar de las adversidades.

DEDICATORIA

Este trabajo está dedicado a mis padres, a mi padre Flaviano y mi madre Carmen, por enseñarme a ser perseverante y enfrentar cada reto que se presente en mi vida.

ÍNDICE

PORTADA	
ASESOR	
AGRADECIMIENTO	
DEDICATORIA	
ÍNDICE	
LISTA DE TABLAS	
LISTA DE FIGURAS	
RESUMEN	
ABSTRACT	
INTRODUCCIÓN	
CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA	12
1.1. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	
1.1.1. PLANTEAMIENTO DEL PROBLEMA	
1.1.2. FORMULACIÓN DEL PROBLEMA	
1.2. OBJETIVOS	
1.2.1. Objetivo general	
1.2.2. Objetivos específicos	
1.3. JUSTIFICACIÓN E IMPORTANCIA	17 18
1.3.1. Importancia	
1.4. HIPÓTESIS Y DESCRIPCIÓN DE VARIABLES	10
1.4.1. HIPÓTESIS DE INVESTIGACIÓN	
1.4.2. HIPÓTESIS ESPECÍFICAS	
1.4.2. HIPOTESIS ESPECIFICAS	
1.5.1. Operacionalización	
CAPÍTULO II MARCO TEÓRICO	
2.1 ANTECEDENTES DE LA INVESTIGACIÓN.	
2.1.1. ARTÍCULOS CIENTÍFICOS	
2.1.1 TESIS	
_	
CAPÍTULO III METODOLOGÍA	
3.1. MÉTODO Y ALCANCES DE LA INVESTIGACIÓN	
3.1.1. MÉTODO DE LA INVESTIGACIÓN	
3.1.2. ALCANCES DE LA INVESTIGACIÓN	
3.2. DISEÑO DE LA INVESTIGACIÓN	
3.2.1. TIPO DE DISEÑO DE INVESTIGACIÓN	
3.3. POBLACIÓN Y MUESTRA	
3.3.1. POBLACIÓN	
3.3.2. MUESTRA	
3.4. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN Y ANÁLISIS DE DATOS	
3.4.1. TÉCNICAS UTILIZADAS EN LA RECOLECCIÓN DE DATOS	
3.4.2. INSTRUMENTOS UTILIZADOS EN LA RECOLECCIÓN DE DATOS	
CAPÍTULO IV RESULTADOS Y DISCUSIÓN	
4.1. GENERALIDADES	
4.1.1. MUNICIPALIDAD PROVINCIAL DE JAUJA	
4.1.2. INFORMACIÓN DEL ÁREA DE ESTUDIO	
4.1.3. ESTADO ACTUAL DEL RECOJO DE RESIDUOS SÓLIDOS	
4.2. CONSUMO DE COMBUSTIBLE POR SECTOR	55
4.3. TIEMPO DE RECOLECCIÓN	56
4.4. MODELO DE OPTIMIZACIÓN DE RUTAS	
4.5. RUTAS PROPUESTAS	61

4.6. AHORRO DE COMBUSTIBLE DE LAS RUTAS PROPUESTAS	
4.7. DISCUSIÓN DE RESULTADOS	69
CONCLUSIONES	71
RECOMENDACIONES	72
REFERENCIAS BIBLIOGRÁFICAS	73
ANEXOS	75

LISTA DE TABLAS

Tabla 1: Recorrido vehículo COMP N°1	13
Tabla 2: Recorrido vehículo COMP N°2	14
Tabla 3: Recorrido vehículo COMP N°3	15
Tabla 4: Operacionalización de variables	20
Tabla 5: Generación de residuos	46
Tabla 6: Generación de residuos para estudio de relleno sanitario	46
Tabla 7: Densidad de residuos domiciliaros	
Tabla 8: Composición de residuos	48
Tabla 9: Compactadores	49
Tabla 10: Plan de mantenimiento	51
Tabla 11: Costo de combustible asignado	52
Tabla 12: Personal Obrero	53
Tabla 13: Distancia por ruta	55
Tabla 14: Costo por combustible	55
Tabla 15: Tiempo de recolección	56
Tabla 16: Tiempo promedio de recolección	56
Tabla 17: Distancia de rutas propuestas	67
Tabla 18: Tiempo de recorridos por ruta propuesta	68
Tabla 19: Ahorro por consumo de combustible	69

LISTA DE FIGURAS

Figura 1: Croquis recorrido compactador 1	14
Figura 2: Croquis recorrido compactador 2	15
Figura 3: Croquis recorrido compactador 3	16
Figura 4: Delimitación del distrito de Jauja	19
Figura 5: Modelo de Transporte	29
Figura 6: Organigrama Municipalidad Provincial de Jauja	44
Figura 7: Organigrama del área de estudio	45
Figura 8: Modificación de vehículo recolector	
Figura 9: Botadero Macón	54
Figura 10: Disposición final	54
Figura 11: Sectores de recolección	59
Figura 12. Plano catastral distrito de Jauja	60
Figura 13: Ruta 1	61
Figura 14: Ruta 2	
Figura 15: Ruta 3	
Figura 16: Ruta 4	65
Figura 17: Ruta 5	66
Figura 18: Ruta 6	67

RESUMEN

La presente investigación tiene como título "Propuesta de rutas optimizadas para el recojo de residuos sólidos domiciliaros en el distrito de Jauja en el año 2018", y tiene como objetivo principal proponer un diseño optimizado de rutas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018. Se presenta un modelo matemático que tiene como base el método del Agente Viajero (TSP), para determinar las rutas óptimas para el recojo de residuos sólidos, dicho modelo es aplicado con el software de investigación de operaciones denominado Lingo. Las rutas propuestas presentan una menor distancia total recorrida, también la reducción del tiempo de recolección, generando así un ahorro de S/ 32,718.13 en combustible. Se concluye que es posible proponer rutas optimizadas con el método del Agente Viajero, que es un método eficiente para la solución de ruteo de vehículos en la recolección de residuos sólidos domiciliaros.

Palabras claves: Agente viajero (TSP), optimización de rutas, recojo de residuos sólidos

ABSTRACT

The present investigation has the title "Proposal of optimized routes for the collection of solid waste in the district of Jauja in 2018", and its main objective is to propose an optimized design of routes for the collection of household solid waste in the district of Jauja in 2018. A mathematical model based on the Traveler Agent (TSP) method to determine the optimal routes for the collection of solid waste is presented, this model is applied with the operations research software called Lingo. The proposed routes have a lower total distance traveled, as well as the reduction of the collection time, thus generating a saving of S/ 32,718.13 in fuel. It is concluded that it is possible to propose optimized routes with the Traveler Agent method, which is an efficient method for the vehicle routing solution in the collection of solid household waste.

Keywords: Traveler agent (TSP), route optimization, solid waste collection.

INTRODUCCIÓN

Actualmente en el país no se ha estudiado el tema de optimización de rutas de transporte a profundidad, la optimización de rutas es parte importante de la logística, y permite reducir costos en los que incurre el transporte.

El recojo de residuos sólidos es responsabilidad de las municipalidades, quienes son los encargados de asignar rutas para el recojo de los residuos, pero generalmente no siguen un estudio formal de optimización, sino más bien son designadas de forma empírica. Es por esta razón que es importante aplicar herramientas de la investigación de operaciones para determinar rutas que optimicen los recursos.

En el presente trabajo se presenta un modelo matemático basado en el método del Agente Viajero TSP, para determinar las rutas óptimas que logren una reducción de la distancia total recorrida así mismo, disminuir el consumo de los recursos, en este caso reducir el consumo del combustible.

En el capítulo I. Se presenta las generalidades del problema de investigación, objetivos generales y específicos, justificación del problema, importancia, hipótesis y variables.

En el capítulo II. Este capítulo contiene el marco teórico, los antecedentes y definición de términos básicos de la investigación.

En el capítulo III. Este capítulo trata de la metodología de la investigación, en otras palabras, se define el método y alcance de la investigación, el diseño, población y muestra y técnicas de recolección de datos.

En el capítulo IV. Este capítulo es acerca de los resultados y discusión, donde se presentan los resultados de la propuesta de rutas optimizadas, para finalmente presentar las conclusiones, recomendaciones, bibliografía y anexos.

CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA

1.1. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA

1.1.1. PLANTEAMIENTO DEL PROBLEMA

La logística es, sin duda, un proceso estratégico dentro de las organizaciones, su importancia es muy relevante sobre todo en el transporte. En el Perú, los costos de transporte representan el 43% del costo logístico total en el país, siendo superior al promedio en américa latina de 32%. Así mismo, la Sociedad Nacional de Industrias (SNI), señala que el costo logístico en el Perú, representa el 13% del PBI, dicho porcentaje no es competitivo frente a otros países como EEUU (9%), Chile (12%), Brasil (12%), esta situación no solo conlleva a una desventaja competitiva, sino también perjudica en el bienestar de la población en general (1).

Actualmente, la magnitud económica del sector transporte genera costos sociales y medio ambientales de gran transcendencia en todos los países del mundo. Siendo los residuos sólidos uno de los mayores riesgos para la salud pública y para los ecosistemas. En los últimos años se han incrementado la oferta de bienes y servicios, conjuntamente con cambios en los hábitos de consumo y crecimiento poblacional, que ocasionan un mayor volumen de residuos, cabe mencionar que la generación de residuos sólidos municipales per cápita en el Perú ha aumentado en un 40% en los últimos años (2). Además según el Plan de Gestión de Residuos Sólidos 2016 – 2024 en el Perú, durante el año 2014 generó un total de 7 497 482 t/año de residuos municipales, de los cuales 64% son residuos domiciliarios y un 26% son residuos no domiciliarios (3). En este sentido, es importante tener un buen

manejo a nivel de municipalidades, ya que son las encargadas directas de la gestión de los residuos sólidos.

En (4), Evaluación de Desempeño Ambiental del Perú 2016 se recomienda diseñar tasas de usuario que cubran el costo total real de la prestación del servicio de recogida, transporte, tratamiento y disposición final de los residuos municipales. Siendo aquí, el transporte parte fundamental de los costos del servicio debido a que las rutas para el recojo de los residuos municipales se diseñan de forma intuitiva y no con un estudio formal que determine un óptimo desempeño de las rutas.

La Municipalidad Provincial de Jauja realizó la actualización del Plan Integral de Gestión Ambiental de Residuos Sólidos (PIGARS) en el año 2016, en cumplimiento con el artículo 23 del reglamento de la ley N° 27314, Ley General de Residuos Sólidos. En el PIGARS se muestra que las rutas están asignadas por el Área de Gestión Integral de Residuos Sólidos en coordinación con la Sub Gerencia Ambiental y Desarrollo Sostenible. La recolección se realiza todos los días con excepción de los días domingos y feriados en el horario de 1:30 p.m. a 8:30 p.m., los residuos orgánicos se recogen los días lunes, miércoles y viernes, mientras que los residuos inservibles los días martes, jueves y sábados. Para ello se cuenta con tres vehículos compactadores.

Tabla 1: Recorrido vehículo COMP N°1

JR./AV./PRLG./BARIO	N° DE	CANTIDAD	
JR./AV./PRLG./BARIO	CUADRA	(cdrs.)	
Av. Francisco Carlé	(1-14)	14	
Av. Francisco Carlé	(1-14)	14	
Barrio Cormis		18	
Av. Héros de la Breña		6	
Av. Ricardo Palma	(9-1)	9	
Je. Bruno Terreros	(1-6)	6	
Jr. Cahuide	(6-2)	5	
Av. Mariscal Cáceres	(1-6)	5	
Av. Aviación	(1-7)	7	
Jr. Leticia	(7-1)	7	
Jr. Villareal	(1-7)	7	
Jr. 25 de Abril	(5-1)	5	
Jr. 28 de Julio	(1-4)	4	
Av. Huarancayo		1	
Av. Huancayo	(3-1)	3	
Av. Huarancayo	(1-3)	4	

Fuente: PIGARS, Jauja 2015

En la Tabla 1 se observa el recorrido de la unidad vehicular ISUZU con placa de rodaje EGV - 502 con una capacidad de 15 m 3 .

Figura 1: Croquis recorrido compactador 1

Fuente: PIGARS, Jauja 2015

Tabla 2: Recorrido vehículo COMP N°2

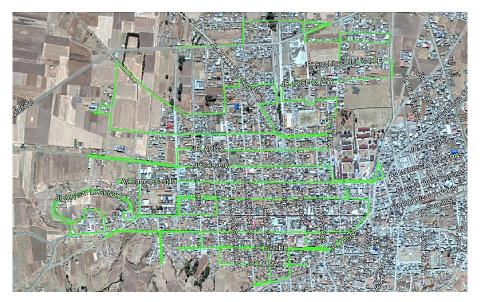
JR./AV./PRLG./BARIO	N° DE	CANTIDAD	
JR./AV./PRLG./BARIO	CUADRA	(cdrs.)	
Barrio Yacurán	-	-	
Jr. Huáscar	(3-4)	2	
Jr. 20 de Diciembre	-	-	
Urb. Miguelito Martínez	-	-	
Av. Tarma	(5-10)	6	
Jr. Huáscar	(5-13)	9	
Prlg. Atahualpa	(11-10)	2	
Jr. Atahualpa	(9-2)	8	
Jr. Alfonso Ugarte	(2-11)	10	
Prlg. Atahualpa	-	-	
Prlg. Manco Cápac	-	-	
Jr. Manco Cápac	(1-12)	12	
Jr. Galvez	(1-10)	10	
Av. Motovivanco	-	-	
Jr. Lima (norte- este)	-	-	
Av. Luis Bardales	-	-	
Jr. Clodoaldo Espinoza Bravo	-	-	
Jr. Andrés Razuri (intersección con jr.			
José Olaya hasta Av. Evitamiento)	-	-	
Jr. Tiwinsa	-	-	
Jr. Andrés Razuri (intersección con Jr.			
José Olaya hasta Jr. Acolla)	-	-	
Plaza la Libertad	-	-	
Jr. Grau	(8-1)	8	
Jr. Bolognesi	(2-13)	12	
Prlg. Tarapacá - plazuela San Antonio	-	-	
Prlg. Colina	-	-	
Jr. Tarapacá	(9-3)	7	
Jr. Colina	(4-9)	6	
Jr. Francisco Pizarro	(2-1)	2	

Fuente: PIGARS, Jauja 2015

En la tabla 2 se observa el recorrido de la unidad vehicular ISUZU con placa de rodaje EGK - 190 con capacidad de 12 m^3 .

Figura 2: Croquis recorrido compactador 2

Fuente: PIGARS Jauja 2015


Tabla 3: Recorrido vehículo COMP N°3

ID /AV /DDI C /DADIO	N° DE	CANTIDAD	
JR./AV./PRLG./BARIO	CUADRA	(cdrs.)	
Av. Evitamiento	-	-	
Los Ángeles	(3-4)	2	
Jr. Heroinas Toledo	-	-	
Jr. Héroes del Cenepa	-	-	
Jr. Arzobispo del Valle	(5-10)	6	
Jr. José Olaya	(5-13)	9	
Jr. Jauja	(11-10)	2	
Jr. Acolla	(9-2)	8	
Jr. Arica	(2-11)	10	
Calle los Traveros	-	-	
Jr. Salaverry	-	-	
Jr. San Martín	(1-12)	12	
Av. Mariscal Castilla	(1-10)	10	
Jr. Bolivar	-	-	
Jr. Sucre	-	-	
Jr. Junín	-	-	
Barrio San Lorenzo	-	-	
Barrio Apay	-	-	
Barrio el Rosario	-	-	
Jr. Ayacucho	-	-	
Jr. La Mar	-	-	
Jr. Tacna	(8-1)	8	

Fuente: PIGARS, Jauja 2015

En la tabla 3 se observa el recorrido de la unidad vehicular HYUNDAI de placa WGP – 199 con capacidad de 9 m³.

Figura 3: Croquis recorrido compactador 3

Fuente: PIGARS, Jauja 2015

Los recorridos de los vehículos compactadores no están determinados en base a un estudio formal, las rutas fueron asignadas de manera empírica según la experiencia de los conductores, por ello, es importante realizar un ruteo haciendo uso de herramientas de la investigación de operaciones para un mejor aprovechamiento de los recursos.

1.1.2. FORMULACIÓN DEL PROBLEMA

a. Problema general

¿Cómo se diseña un sistema optimizado de rutas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja utilizando el método del agente viajero TSP en el año 2018?

b. Problemas específicos

¿Cuál es el estado actual del sistema de rutas de recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018?

¿Es posible calcular los costos incurridos por transporte en el recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018?

¿Cómo se determina la factibilidad técnica de las rutas propuestas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja utilizando el método del agente viajero TSP?

¿Cómo se determina la factibilidad económica de las rutas propuestas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja, utilizando el método del agente Viajero TSP?

1.2. OBJETIVOS

1.2.1. OBJETIVO GENERAL

Proponer un diseño optimizado de rutas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja, utilizando el método del agente viajero TSP, en el año 2018.

1.2.2. OBJETIVOS ESPECÍFICOS

- Definir el estado actual del sistema de recojo de residuos sólidos domiciliaros en el distrito de Jauja en el año 2018.
- Determinar los costos incurridos por el transporte en el recojo de los residuos sólidos domiciliarios por sectores.
- Determinar la factibilidad técnica de las rutas propuestas con el método del agente viajero TSP.
- Determinar la factibilidad económica de la propuesta de rutas optimizadas para el recojo de residuos sólidos domiciliarios en el distrito de Jauja con el método del agente viajero TSP.

1.3. JUSTIFICACIÓN E IMPORTANCIA

En lo tecnológico

La investigación usó el software LINGO 17.0, software de investigación de operaciones, con el cual se aplicó la función objetivo de minimizar la distancia total recorrida en un sistema de rutas.

En lo social

El uso de herramientas de la investigación de operaciones para determinar las rutas óptimas en el recojo de los residuos sólidos domiciliarios aporta para la sociedad un mejor servicio y adecuado uso de los recursos, aprovechando al máximo así en materia de tiempos, mano de obra y gastos operativos generados por el transporte, además de una reducción en emisiones de CO₂ de los vehículos.

En lo académico

La investigación permitió el estudio del ruteo de vehículos en el caso del recojo de residuos sólidos domiciliarios y así poder evaluar los resultados al aplicar un método de optimización utilizando herramientas de la investigación de operaciones, el cual permitió adquirir nuevos conocimientos para el inicio de estudios de ruteo de vehículos con diferentes tipos de restricciones, tales como, restricciones de tiempo, capacidad, flotas heterogéneas, entre otras.

Delimitación

La investigación se realizó en el distrito de Jauja, tomando en cuenta todas las calles que la conforman.

Figura 4: Delimitación del distrito de Jauja

Fuente: Google Earth.

1.3.1. IMPORTANCIA

Un adecuado ruteo de vehículos recolectores en el recojo de residuos sólidos domiciliaros mejora la calidad del servicio al cubrir la mayor parte de la población y al mismo tiempo evita la aparición de botaderos clandestinos que afectan la salud pública de la población en general.

1.4. HIPÓTESIS Y DESCRIPCIÓN DE VARIABLES

1.4.1. HIPÓTESIS DE INVESTIGACIÓN

El diseño de un sistema optimizado de rutas utilizando el método del agente viajero TSP, disminuye el costo de transporte en el recojo de residuos sólidos domiciliarios en el distrito de Jauja.

1.4.2. HIPÓTESIS ESPECÍFICAS

 Es posible definir el estado actual del sistema de recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018.

- Es posible determinar los costos incurridos por transporte en el recojo de los residuos sólidos domiciliarios por sectores.
- Es posible determinar la factibilidad técnica de las rutas propuestas mediante el método del agente viajero TSP.
- Es posible determinar la factibilidad económica de la propuesta de rutas mediante el método del agente viajero TSP.

1.5. VARIABLES

Variable independiente: Modelo de optimización de rutas

Definición: representación matemática de la realidad basada en variables que determinan la ruta óptima tomando en cuenta la distancia total recorrida.

 Variable dependiente: costo del sistema de transporte de recolección de los residuos.

Definición: Costos generados por el recorrido total de los nodos del sistema de rutas propuestas.

1.5.1. OPERACIONALIZACIÓN

Tabla 4: Operacionalización de variables

Variable s	Definición conceptual	Definición operacional	Dimensione s	Indicadores
Modelo de optimización de rutas	Representació n matemática de la realidad basada en variables que	Lógica de secuencia: $min \sum_{(i,j) \in E} C_{ij} X_{ij}$	Minimizar Tiempo de recorrido por ruta	Tiempo de recorrido por ruta (h)
	determinan la ruta óptima tomando en cuenta la distancia total	$s. a \sum_{j \in (\Delta^{+}(t), \Delta^{-}(t))} X_{ij}$ ≥ 2	Minimizar Distancia total recorrida	Distancia de rutas en (Km)
	recorrida.		Minimizar Consumo de combustible	Costo de consumo de combustible por compactado r
Costo del sistema de	Costos generados por	Costo anual del transporte en la	Ahorro de combustible	% De ahorro de
transporte de	el recorrido	recolección de	COTTIDUSTIDIE	combustible

recolección de residuos	total de los nodos del sistema de rutas propuestas.	residuos sólidos domiciliarios en el distrito de Jauja.		
----------------------------	---	---	--	--

Fuente: Elaboración Propia

CAPÍTULO II MARCO TEÓRICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN.

2.1.1. ARTÍCULOS CIENTÍFICOS

En el artículo científico de título "Preparación eficiente de órdenes en una compañía distribuidora de café usando búsqueda tabú" (2013), tiene como objetivo desarrollar un metaheurístico de búsqueda para resolver el problema de pedidos planteado como un TSP (problema del agente viajero), para obtener distancias mínimas para recoger los productos de los centros de almacenamiento. Con la implementación del metaheurístico se redujo la distancia, tiempo y costo a un 44%, que es un equivalente de 825 000 dólares/mes y 825 minutos/mes. La investigación concluye que el picking se puede modelar como un TSP, ya que la tarea comienza y termina en el mismo lugar de almacenamiento (5).

El artículo científico de título "Optimización de Recorridos para la Recolección de Residuos Infecciosos" (2013), cuyo objetivo es determinar un conjunto de rutas óptimas para la recolección de residuos infecciosos generados por un aproximado de 185 instituciones tales como hospitales, clínicas, laboratorios, veterinarias, casa de sepelio, entre otras, en la ciudad de Río Cuarto, Argentina. Se diseñó e implementó un método aproximado para resolver el problema de ruteo de vehículos con limitación de capacidad, dicho método fue probado en una serie de problemas test, obteniendo un comportamiento de la heurística satisfactorio si se comparan los tiempos de cómputo incurridos para refinar la solución inicial y la final. El estudio contribuye con una metodología para resolver el problema de ruteo de vehículos

con restricción de capacidad mediante un algoritmo de búsqueda exacto, a través de una heurística de búsqueda local (6).

En el artículo científico de título "Espacio literario relevante sobre el problema del vendedor viajero (TSP): contenido, clasificación, métodos y campos de inspiración" (2013), la investigación tiene como objetivo describir y analizar el espacio literario más relevante del problema del vendedor viajero TSP a través de la historia y el periodo 2006 – 2010 los datos son provenientes de Scopus, donde se analizó el tema que tratan las diez publicaciones más citadas que abordan el TSP, también se describe los métodos que han sido empleados en la solución del TSP. La investigación concluye que, a través del tiempo se aportó principalmente sobre la clasificación de los TSP, métodos y campos de inspiración, también la tendencia es la hibridación de los métodos existentes y métodos heurísticos que posibilitan un avance en optimización combinatoria (7).

En el artículo científico "Una solución al enrutamiento de vehículos en ciudades montañosas considerando aspectos ambientales y económicos" (2018), tiene como objetivo encontrar el enrutamiento óptimo considerando el terreno montañoso para minimizar tanto en costos como en emisiones. Se utiliza la metodología de un modelo matemático multiobjetivo para encontrar el equilibrio entre costo de transporte y el impacto ambiental que puede generar por el transporte. Este estudio se realizó en una ciudad andina del país de Colombia que presenta una superficie montañosa y se determinó que la ruta más corta no necesariamente es la óptima debido al consumo de combustible por las pendientes y las emisiones de CO₂ (8).

En el artículo científico de título "Resolución del problema de enrutamiento de vehículos con limitaciones de capacidad utilizando un procedimiento metaheurístico de dos fases" (2014), cuyo objetivo es dar solución al problema de enrutamiento de vehículos con restricción de capacidad y flota homogénea (CVPR) mediante la combinación de dos fases las cuales son el diseño de rutas y la planificación de la flota. Los resultados del estudio indican que la metaheurística de dos fases para el problema de ruteo de vehículos con restricción de capacidad y flota homogénea, presentan comportamientos homogéneos y confiables para problemas de ruteo reales. La solución óptima propuesta en la investigación podría ser conveniente en la práctica si es que se cuenta con un procesamiento de mediano a alto nivel (9).

2.1.1 **TESIS**

En la tesis titulada "Modelo Matemático de Planificación de rutas para minimizar los costos del reparto de la empresa San Isidro S.R.L. en el año 2015", realizada en la Universidad César Vallejo. El estudio busca planificar las rutas de reparto de carga a través de un modelo matemático TSP para minimizar los costos de la empresa San Isidro Labrador S.R.L. (10). La metodología tiene las siguientes características:

- La población es la cartera de clientes de la empresa, constituida por 275 clientes.
- Para determinar la muestra se aplicó la fórmula de población finita, calculando una muestra de 161 clientes.
- El mapeo se hizo enfocado en los clientes insatisfechos del sistema de reparto.
- Se utilizó el software LINGO Systems para resolver los modelos de optimización.
- La comparación de costos se prueba estadísticamente con el software SPSS vs 22.
- Las variables utilizadas en esta investigación fueron: Modelo matemático de Planificación de Rutas y el Costo del Sistema de Reparto.

En la investigación "Impacto económico de la mejora de las rutas de recolección de residuos sólidos en la ciudad de Cajabamba (2016), en el rubro de costos de limpieza pública de la Municipalidad Provincial de Cajabamba", realizado en la Universidad Privada del Norte. La investigación aporta un modelo de optimización TSP para minimizar los costos del rubro limpieza pública, aplicando estrategias de Costo/Efectividad (11). Para recolectar datos se utilizó una muestra de recorridos realizados de la compactadora en las rutas de recolección tomadas con GPS, BaseCamp y Google Maps. Para analizar la información se utilizó la observación directa, GPS, Autocad Land y para la programación matemática se utilizó el Software Lingo. Las variables de la investigación fueron la Mejora de las Rutas de Recolección de Residuos Sólidos y el Costo de Limpieza Pública.

En la tesis titulada "Diseño de optimización de rutas de transporte TSP y plan de acción para incrementar la rentabilidad de Perú GLP S.A.C. Trujillo" (2017), realizada en la Universidad Privada del Norte Perú (12). El estudio tiene el objetivo de aplicar el mejor método de optimización para la empresa de transportes de GLP para mejorar su rentabilidad, para esto se hace uso de la herramienta del TSP para

determinar el número de rutas para despachar el GLP, y para el macro ruteo se hace un ajuste al método del agente viajero TSP. Aplicando dicha solución, el estudio logra reducir en 17 y 15% los kilómetros diarios recorridos en los distritos. Además, que se reduce en 20% el tiempo de transporte y un 15% de ahorro en costos operativos. Las variables independientes en esta tesis fueron: El diseño optimizado de rutas de transporte TSP y Diseño de un plan de acción semanal para la operación de reparto de producto. Y la variable dependiente fue: Incrementar la rentabilidad.

En la tesis titulada "Optimización de rutas en una empresa de recojo de residuos sólidos en el distrito de Los Olivos" (2013), realizada en la Pontificia Universidad Católica del Perú (13). La investigación tiene como objetivo implementar el mejor método de optimización con el fin de mejorar la rentabilidad de la empresa recolectora de residuos sólidos, para eso, combina el microruteo, dónde se utiliza una fórmula para hallar el número de vehículos necesarios y el macroruteo que se ajustará al método del Agente Viajero (TSP). El modelo de optimización determina la solución adecuada, reduciendo en 20% el tiempo total en los viajes.

2.2. BASES TEÓRICAS

2.2.1. FUNDAMENTOS TEÓRICOS

2.2.1.1. Investigación de Operaciones

2.2.1.1.1. Origen de la Investigación de Operaciones

La Investigación de Operaciones tiene su origen formal durante la Segunda Guerra Mundial en el país de Inglaterra, cuando un equipo de científicos e ingenieros, ordenados por comandantes militares británicos, pidieron que se analizara problemas militares tales como, despliegue de radares y el control de convoyes, bombardeos, operaciones anti submarinas, y colocación de minas. Se cree que el nombre de investigación de operaciones se debe a que el grupo de científicos e ingenieros realizaban la labor de Investigar las operaciones bélicas. Terminada la guerra con el éxito de la investigación de

operaciones se generó gran expectativa por la posibilidad de aplicarla en otros ámbitos diferentes del militar.

El desarrollo de las organizaciones generó la división del trabajo y la separación de responsabilidades administrativas, estos problemas volvieron a tener relevancia al término de la guerra y es cuando consultores industriales que trabajaron en investigación de operaciones durante la guerra dieron cuenta de que los problemas que afrontaban las organizaciones eran en esencia iguales que los que debían enfrentar los militares, pero en una realidad diferente. Para el término de la década de los cincuenta ya se habían desarrollado casi por completo muchas herramientas de la investigación de operaciones, ya sea la programación lineal, programación dinámica, teoría de colas y teoría de inventarios, así mismo el método simplex para resolver problemas de programación lineal en el año 1947 por George Dantzig.

La revolución de las computadoras fue parte importante del desarrollo de la investigación de operaciones ya que para resolver problemas complejos siempre requiere de muchos cálculos que realizarlos de forma manual resulta casi imposible, por lo cual el desarrollo de la computadora con su capacidad de procesamiento de datos facilitó la resolución de problemas de investigación de operaciones.

2.2.1.1.2. Naturaleza de la Investigación de Operaciones

La Investigación de Operaciones se encarga de la problemática relacionada con la conducción y coordinación de las actividades de una organización, aunque la investigación de operaciones se aplica en numerosas áreas, tales como, la manufactura, el transporte, planeación financiera, cuidado de la salud, servicios públicos, etc. Utiliza el método científico y busca la mejor solución la cual se le denomina la solución

óptima, cabe mencionar que se dice mejor y no la mejor solución ya que es posible que existan muchas soluciones consideras como las mejores (14).

En la investigación de operaciones no existe una técnica general para resolver todos los modelos en la práctica, lo que determina el método de solución, es el tipo y la complejidad del modelo matemático.

2.2.1.1.3. Fases de un estudio de Investigación de Operaciones

Según (15), para implementar la investigación de operaciones, las principales fases son:

- a. Definición del problema: el fin es identificar tres elementos clave del problema de decisión, descripción de las alternativas de solución, determinación del objetivo del estudio y especificaciones de las limitaciones bajo las cuales funciona el sistema modelado.
- b. La construcción del modelo: se pretende convertir la definición del problema en relaciones matemáticas. El modelo se puede ajustar a otros modelos estándar o también ocurre que las relaciones matemáticas son muy complejas que el equipo de investigación de operaciones puede simplificar el modelo y utilizar un método heurístico o considerar la simulación si es que es apropiado.
- c. Solución del modelo: en esta fase se hace uso de algoritmos conocidos de optimización teniendo en cuenta el análisis de sensibilidad que consiste en obtener información de la solución óptima cuando el modelo es sometido a ciertos cambios en algunos de sus parámetros.

- d. Validez del modelo: se comprueba si el modelo predice adecuadamente el comportamiento del sistema estudiado. Un método común para comprobar la validez de un modelo es comparar los resultados con el histórico. El modelo es válido si en condiciones de entrada de datos iguales, reproduce de manera coherente el desempeño del pasado.
- e. Implementación de la solución: implica la transformación de los resultados en instrucciones de operación que sean fáciles de comprender para las personas que administrarán el sistema recomendado.

2.2.1.2. Modelo matemático

Un modelo matemático es una representación de la realidad mediante la utilización de relaciones matemáticas, a través de la lógica, que tiene como objetivo ayudar en el proceso de toma de decisiones. El modelo matemático debe ser construido con el total de alternativas entre las cuales se toma la decisión, las restricciones existentes y la medida con las que se evaluarán las alternativas, en concordancia con el objetivo que se quiere lograr (16).

2.2.1.2.1. Construcción de modelo matemático

De forma general un modelo matemático en investigación de operaciones se representa con:

- **a.** Función objetivo: que debe expresar la meta a la cual llegar, puede ser del tipo minimizar o maximizar.
- b. Las restricciones: por su parte expresan las limitaciones de recurso o características propias de la naturaleza del sistema modelado y donde la solución obtenida al resolver el modelo debe cumplir con todas las restricciones.

- c. Parámetros: la información del sistema es expresada a través de parámetros, que viene a ser datos dados con anterioridad que representan a un valor real o supuesto que se encuentra en el sistema. Comúnmente algunos parámetros son: distancias, demanda de clientes, costos, etc.
- d. Solución al sistema: vienen a ser dadas mediante variables que generalmente son llamadas de decisión. Para dar solución a un sistema es necesario determinar el valor que deben tomar las variables.

2.2.1.3. Modelo de trasporte

Dentro de la programación lineal, el modelo de transporte es un caso especial. Se busca encontrar el plan de distribución que minimice el costo total de distribución y satisfaga las restricciones de la oferta y la demanda, donde de m fuentes u orígenes de oferta se debe enviar a n puntos de destinos o demanda determinados. Los arcos (m,n) están determinados por la ruta que debe seguir cada origen con un destino, que transporta el costo por unidad C_{ij} y la cantidad transportada X_{ij} . La cantidad de la oferta en el origen i es a_i y la cantidad de la demanda en el destino j es b_i .

Orígenes Destinos $a_1 \xrightarrow{\qquad \qquad \qquad } 1 \xrightarrow{\qquad \qquad } b_1$ Unidades ofertadas $a_2 \xrightarrow{\qquad \qquad } 2 \xrightarrow{\qquad \qquad } b_2 \xrightarrow{\qquad \qquad } demandadas$ $\vdots \xrightarrow{\qquad \qquad } a_m \xrightarrow{\qquad \qquad } m \xrightarrow{\qquad \qquad } c_{mn}: x_{mn}$

Figura 5: Modelo de Transporte

Fuente: TAHA, Hamdy a. Investigación de operaciones - Modelo de transbordo. 2012.

2.2.1.3.1. Modelo de programación lineal del problema de transporte

El modelo del problema del transporte de forma generalizada se considera como variable de decisión a X_{ij} , que viene a ser el número de unidades enviadas del origen i al destino j. De tal modo que la sumatoria de todos los costos $C_{ij}X_{ij}$ viene a ser la función objetivo sujeta a la restricción de no sobrepasar la capacidad de las fuentes y también que la demanda de los destinos sea cubierta. El modelo se expresa de la siguiente manera:

$$Min \sum_{i} \sum_{j} C_{ij} X_{ij}$$

Sujeto a:

$$Min = \sum_i x_{ij} \le a_i; para\ toda\ fuente\ i$$
 $Min = \sum_i x_{ij} \le b_i; para\ todo\ origen\ j$ $X_{ij} \ge 0$

2.2.1.4. Problema de ruteo de vehículos (VRP)

El ruteo de vehículos conocido como VRP, por sus siglas en inglés (Vehicle Routing Problem) es un problema combinatorio que según (17) surgió desde el año 1959. Este tipo de problema viene a estar determinado por un conjunto de rutas para un número de vehículos que tienen como origen uno, o varios depósitos dispersos geográficamente, y que deben cubrir un número de clientes. El objetivo del problema de ruteo de vehículos es minimizar el costo de las rutas, que comienzan y terminan en un depósito, para un grupo de clientes dados. Los componentes del VRP son los clientes, los depósitos y los vehículos, dónde los clientes tienen cierta demanda que debe ser cubierta por algún vehículo y, además, generalmente cada cliente solo es visitado una vez, salvo casos excepcionales.

El problema de ruteo de vehículos pertenece a los problemas NP – Hard, esto significa que se recurre generalmente a heurísticas o procedimientos

aproximados para encontrar soluciones lo más cercanas a la óptima y no buscar específicamente la óptima.

Las diferentes restricciones y situaciones particulares de este problema generan las siguientes variaciones:

- a. Problema con capacidades CVRP: (Capacited VRP) es el problema de ruteo de vehículos más general, dónde uno o varios vehículos con límite de capacidad deben realizar la distribución según la demanda de los clientes. La solución para este tipo de variante de VRP, han sido desarrolladas mediante: búsqueda tabú, algoritmos genéticos, algoritmo de colonia de hormigas, y algoritmos híbridos de recorrido simulado.
- b. MDVRP: (Multi-depot VRP) es un VRP que tiene varios depósitos donde cada cliente es visitado por uno de los vehículos que parte de algún depósito. También puede tratarse como un problema de agrupamiento en sentido de que sale un grupo de vehículos por depósito. Este caso de problema fue resuelto por Tansini mediante la técnica de cluster firts routen second.
- c. PVRP: (Period VRP) Es un VRP de tipo periódico que en un periodo de M días cada cliente debe ser visitado una o varias veces. En el modelo general de un PVRP existe una demanda fija diaria para los clientes.
- d. SDVRP: (Split Delivery VRP) Es un VRP de entrega dividida en el cual un cliente puede ser atendido por más de un vehículo si se reducen los costos totales, ya que es importante si el tamaño de pedidos supera la capacidad de un vehículo.
- e. SVRP: (Stochastic VRP) o VRP estocástico surge cuando algunos elementos del VRP son aleatorios, ya sean, los costos, demanda de clientes y tiempo de viaje de los vehículos. Debido a su complejidad este problema es resuelto con procesos estocásticos enteros como Markov, también se puede tener buenos resultados con algoritmos metaheurísticos.
- **f.** VRPPD: (VRP Pickup and Delivery) o VRP con recogida y entrega, en este caso se presenta la posibilidad que los clientes puedan

devolver ciertos bienes, entonces, se debe prever que estos quepan en los vehículos. La complejidad de este problema es resuelta generalmente con algoritmos genéticos.

- g. MFVRP: (Mix Fleet VRP) es un VRP de flota mixta, en este caso se presenta una flota de vehículos de capacidad heterogénea por lo que es determinante considerar estas capacidades en la ruta que ha de seguir cada vehículo según la demanda o la cantidad del bien transportado. Por su complejidad se ha tratado de resolver este problema con la programación lineal entera mixta pero según (18) sostiene que ningún algoritmo exacto ha obtenido resultados confiables.
- h. VRPTW: (VRP With Time Windows) es aquel VRP que se incluye una restricción más en la cual se asocia al cliente con una ventana de tiempo, en otras palabras, el cliente solo está dispuesto a recibir el bien o servicio en un periodo de tiempo determinado.

2.2.1.5. Problema del agente viajero TSP

El problema del agente viajero TSP por sus siglas en inglés (Travelling Salesman Problem) es un problema de optimización, donde un agente viajero pretende visitar una sola vez cada ciudad de un conjunto de ellas (previamente establecidas), además debe regresar al punto de donde partió. Un recorrido que cumpla con estas características específicas, es llamado *tour*. El objetivo es encontrar el *tour* para el cual la distancia total recorrida sea mínima.

En este problema no existe una demanda asociada a los clientes, tampoco existe restricciones temporales. Según (19) el problema puede formularse de la siguiente manera:

$$\min \sum_{(i,j)\in E} C_{ij} X_{ij} \tag{1.1}$$

$$s. a \sum_{j \in \Delta^{+}(i)} X_{ij} = 1 \qquad \forall i \in V$$
 (1.2)

$$\sum_{i \in \Delta^{-}(j)} X_{ij} = 1 \qquad \forall i \in V$$
 (1.3)

$$\sum_{i \in S, j \in \Delta^{+}(i) \setminus S} X_{ij} \ge 1 \qquad \forall S \subset V \qquad (1.4)$$

$$x_{ij} \in \{0,1\} \qquad \forall (i,j) \in E$$

Las variables binarias x_{ij} indican si el arco (i,j) es empleado en la solución. La función objetivo (1.1) determina que el costo total de la solución es la suma de los costos de los arcos utilizados. Las restricciones 1.2 y 1.3 determinan que la ruta debe abordar cada nodo solo una vez. Y la restricción 1.4 es llamada restricción de eliminación de sub-tour e indican que todo subconjunto de nodos S debe ser abandonado al menos una vez.

2.2.1.6. Base legal

2.2.1.6.1. Ley N° 27972, Ley orgánica de Municipalidades

Esta ley, norma la organización, autonomía, competencias, funciones y recursos de las Municipalidades. Estas instituciones públicas, son los órganos del gobierno local que emanan de la voluntad popular conforme a la ley electoral correspondiente y representan al vecindario, promueven la adecuada prestación de los servicios públicos locales, fomentan el bienestar integral, sostenible y armónico de su circunscripción.

2.2.1.7. Ley 27314 Ley General de Residuos Sólidos

El reglamento de la Ley establece que los gobiernos regionales deben promover la adecuada gestión y manejo de los residuos sólidos en el ámbito de su jurisdicción; priorizar programas de inversión pública o mixta, para la construcción, puesta en valor o adecuación ambiental y sanitaria de la infraestructura de residuos sólidos, en coordinación con las municipalidades provinciales correspondientes.

Los gobiernos regionales deben asumir, en coordinación con la autoridad de salud de su jurisdicción y el Ministerio del Ambiente, o a pedido de cualquiera de dichas autoridades, según corresponda, la prestación de los servicios de residuos sólidos para complementar o suplir la acción de aquellas municipalidades provinciales o distritales que no pueden hacerse cargo de los mismo e forma adecuada o que estén comprendidas en el ámbito de una declaratoria de emergencia sanitaria o ambiental.

2.2.1.7.1. Decreto legislativo N° 1065, modificatoria de ley N° 27314

Art. 10°. Las municipalidades provinciales son responsables por la gestión de los residuos sólidos de origen domiciliario, comercial y de aquellas actividades que generan residuos similares a estos en todo el ámbito de su jurisdicción, efectuando las coordinaciones con el gobierno regional al que corresponden, para promover la ejecución, revalorización o adecuación, infraestructura para manejo de los residuos sólidos, así como para la erradicación de botaderos que pongan en riesgo la salud de las personas y el ambiente. Están obligados a:

 Planificar la gestión integral de los residuos sólidos en el ámbito de su jurisdicción, compatibilizando los planes de manejo de residuos sólidos de sus distritos y centros poblados menores, con las políticas de desarrollo local y regional y con sus respectivos Planes de Acondicionamiento Territorial y de Desarrollo Urbano.

- 2. Regular y fiscalizar el manejo y la prestación de los servicios de residuos sólidos de su jurisdicción.
- Emitir opinión fundamentada sobre los proyectos de ordenanzas distritales referidos al manejo de residuos sólidos, incluyendo la cobranza de arbitrios correspondientes.
- Asegurar la adecuada limpieza de vías, espacios y monumentos públicos, la recolección y trasporte de los residuos sólidos en el distrito del cercado de las ciudades capitales correspondientes.
- 5. Aprobar los proyectos de infraestructura de residuos sólidos del ámbito de gestión municipal.
- Autorizar el funcionamiento de la infraestructura de residuos sólidos del ámbito de gestión municipal y no municipal, con excepción de los indicados en el Artículo 6 de la presente Ley.
- 7. Asumir, en coordinación con la autoridad de salud en su jurisdicción y el Ministerio del Ambiente, o a pedido de cualquiera de dichas autoridades, según corresponda, la prestación de los servicios de residuos sólidos para complementar o suplir la acción de aquellos distritos que no puedan hacerse cargo de los mismo en forma adecuada o que hayan sido declarados en emergencia sanitaria o ambiental. El costo de los servicios prestados deberá ser sufragado por la municipalidad distrital correspondiente.
- Adopta medidas conducentes a promover la construcción de empresas prestadores de servicios de residuos sólidos indicadas en el Artículo 27 de la presente Ley, así como incentivar y priorizar la prestación privada de dichos servicios.

- Promover y garantizar servicios de residuos sólidos administrados bajo principios, criterios y contabilidad de costos de carácter empresarial.
- Suscribir contratos de prestación de servicios de residuos sólidos con las empresas registradas en el Ministerio de Salud.
- 11. Autorizar y fiscalizar el transporte de residuos peligrosos en su jurisdicción, en concordancia con lo establecido en la Ley N°28256, ley que regula el Transporte Terrestre de Materiales y Residuos Peligrosos, con excepción del que se realiza en las vías nacionales y regionales.
- 12. Implementar progresivamente programas de segregación en la fuente y recolección selectiva de los residuos sólidos en todo el ámbito de su jurisdicción, facilitando su reaprovechamiento y asegurando su disposición final diferenciada y técnicamente adecuada.

Las municipalidades distritales y provinciales en lo que concierne a los distritos del cercado, son responsables por la prestación de los servicios de recolección y transporte de los residuos sólidos municipales y de la limpieza de vías, espacios y monumentos públicos en su jurisdicción. Los residuos sólidos en su totalidad deberán ser conducidos directamente a infraestructuras de residuos autorizadas por la municipalidad provincial, estando obligados los municipios distritales al pago de los derechos correspondientes.

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

- Algoritmo: es una secuencia de operaciones bien definidas para la resolución de cierta clase de problema en un número finito de pasos.
- Arcos: los arcos bienes a ser el camino o ruta que existe entre los nodos de una red.

- Cliente: en una red de distribución, un cliente se refiere al lugar que se debe dirigir un vehículo para recoger o entregar un bien o servicio.
- Depósito: en un problema de distribución, constituye el almacén o lugar de donde parten los vehículos para realizar el servicio.
- Heurística: procedimiento simple que se utiliza cuando no existe un método exacto y que está basado en el sentido común. Se supone que se obtendrá una buna solución (no necesariamente la óptima) a problemas de gran complejidad, de un modo fácil y rápido.
- Logística: es el conjunto de actividades que permite el flujo físico de una mercancía en las etapas de distribución.
- Metaheurística: son procedimientos de búsqueda que no garantizan la obtención de una solución óptima de determinado problema, a diferencia de la heurística, las técnicas metaheurísticas tratar de huir de óptimos locales orientando la búsqueda en cada momento dependiendo de la evolución del proceso de búsqueda.
- Nodo: es un vértice o punto, en una red de transporte están determinados por un lugar o ciudad que se debe visitar.
- Rutas: es un camino determinado que va de un lugar a otro. En la teoría de redes, se denomina ruta a los nodos que constituyen una cadena.
- Residuos sólidos: son aquellas sustancias, productos o subproductos en estado sólido o semisólidos desechados por su generador. Se entiendo por generador a aquella persona que en razón de sus actividades produce residuos sólidos.
- Optimización: método para determinar los valores de las variables que participan en un sistema para que el resultado sea el óptimo.
- Restricciones: una restricción es una limitante del valor de las variables de decisión en un modelo matemático.
- Ruteo: cuando en un sistema de rutas se debe escoger la más corta para llegar de un origen a un destino.

CAPÍTULO III METODOLOGÍA

3.1. MÉTODO Y ALCANCES DE LA INVESTIGACIÓN

3.1.1. MÉTODO DE LA INVESTIGACIÓN

Se utiliza como método general, el método cuantitativo. El método cuantitativo, o método tradicional, se fundamenta en la medición de características de los fenómenos, lo cual supone derivar un marco conceptual pertinente al problema analizado (20).

Método específico de la investigación

En la investigación, primero se realizó un análisis de la situación actual del sistema de recojo de los residuos sólidos domiciliarios para luego optimizar las rutas con el método del Agente Viajero (TSP). Se realiza la función objetivo que minimiza la distancia total recorrida, en un principio no se toma en cuenta el sentido de tránsito de las calles, se determinará primero el orden y luego se analizará la ruta a seguir en la realidad. Las rutas se determinarán según el resultado del software LINGO, para finalmente calcular el costo del transporte.

3.1.2. ALCANCES DE LA INVESTIGACIÓN

a. Tipo de investigación

La investigación es aplicada, porque los resultados son parte de la realidad concreta. El sistema optimizado de rutas de trasporte es aplicable a la realidad y los costos generados por el transporte son probatorios.

Cada proceso a desarrollar en este sistema, es consecuente, no se puede realizar de manera desordenada y es necesario de pasos específicos.

b. Nivel de investigación

Es de nivel explicativo, debido a que se orienta a explicar en cómo el modelo optimizado de rutas de transporte para el recojo de los residuos sólidos domiciliarios, contribuye a reducir el costo de transporte.

3.2. DISEÑO DE LA INVESTIGACIÓN

3.2.1. TIPO DE DISEÑO DE INVESTIGACIÓN.

El diseño de investigación que se emplea en el presente estudio es el experimental del tipo pre-experimental, ya que en un diseño experimental se pretende establecer el cómo la variable independiente afecta a la variable dependiente.

El diseño pre experimental - diseño de pre-prueba/pos-prueba con un solo grupo, aplica una prueba previa para luego administrar el tratamiento y finalmente aplicar una prueba posterior al estímulo (21).

 $G 0_1 X 0_2$

Donde:

G: calles del distrito de Jauja

O₁: situación actual de las rutas de recojo de residuos sólidos domiciliarios en el distrito de Jauja, con respecto al costo de transporte.

X: Utilización del modelo optimizado de rutas (TSP)

O₂: Mejora de las rutas de recojo de residuos sólidos domiciliarios en el costo por transporte.

3.3. POBLACIÓN Y MUESTRA

3.3.1. POBLACIÓN

La población está determinada por todas las calles que conforman el distrito de Jauja.

3.3.2. MUESTRA

La muestra es censal, porque está determinada por la totalidad de las calles que conforman los 16 barrios del distrito de Jauja, esto para que al aplicar la función objetivo se considere los 293 nodos formados por las intersecciones de las calles y de esta manera la ruta óptima recorra todos con una distancia mínima, además que los vehículos recolectores puedan cubrir la mayor parte del distrito de Jauja.

3.4. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN Y ANÁLISIS DE DATOS

Para el desarrollo de la presente Tesis se utilizó:

3.4.1. TÉCNICAS UTILIZADAS EN LA RECOLECCIÓN DE DATOS

Observación: según (22), la observación es una técnica para recopilación de información debido a que mediante ella se puede utilizar instrumentos efectivos, tales como: la lista de cotejo, las fichas documentales, los cuadernos de notas, etc.

Análisis de documentos: se accede y verifica la documentación de la sub gerencia Ambiental y Desarrollo sostenible, siendo los documentos más relevantes los siguientes: Plan Integral de Gestión Ambiental de Residuos Sólidos (PIGARS), Plan Operativo Institucional (POI), Plan de Mantenimiento y Estudio preliminar para relleno sanitario en Jauja.

De esta forma se obtiene información de primera mano y confiable de los procedimientos que se desarrollan para realizar las funciones del área de Gestión Integral de Residuos Sólidos. Se recorrió las calles del distrito de Jauja para reconocer las rutas de los vehículos recolectores tomando nota de algunas incidencias y reconociendo puntos de mayor acumulación de residuos.

3.4.1.1. TÉCNICAS DE ANÁLISIS DE DATOS

Software LINGO, que es un programa de investigación de operaciones, con el cual se resuelve la función objetivo.

Google Earth, se utilizó para determinar las distancias entre las calles del distrito de Jauja, así como realizar la gráfica de las nuevas rutas propuestas.

3.4.2. INSTRUMENTOS UTILIZADOS EN LA RECOLECCIÓN DE DATOS

Guía de observación/ lista de cotejo: (22) menciona que la lista de cotejo es un instrumento importante dentro del proceso de análisis documentario, la lista de cotejo empleada en la investigación es una tabla de doble entrada, elaborado para evaluar el estado actual del recojo de residuos sólidos domiciliarios en el distrito de Jauja, las actividades a considerar se muestran en el anexo 29.

Guía de análisis documentario: este instrumento es una guía para la revisión y análisis de documentos que permite la verificación de las rutas de recojo de residuos sólidos, horarios de recolección, planos de los sectores, entre otros aspectos que se muestran en el anexo 28.

Formato de horarios de ingreso y término de recolección de los vehículos recolectores, este formato es tomado de (José Taquia, 2008) en su tesis titulada "Optimización de rutas en una empresa de recojo de residuos sólidos en el distrito de los olivos". Anexo 30.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

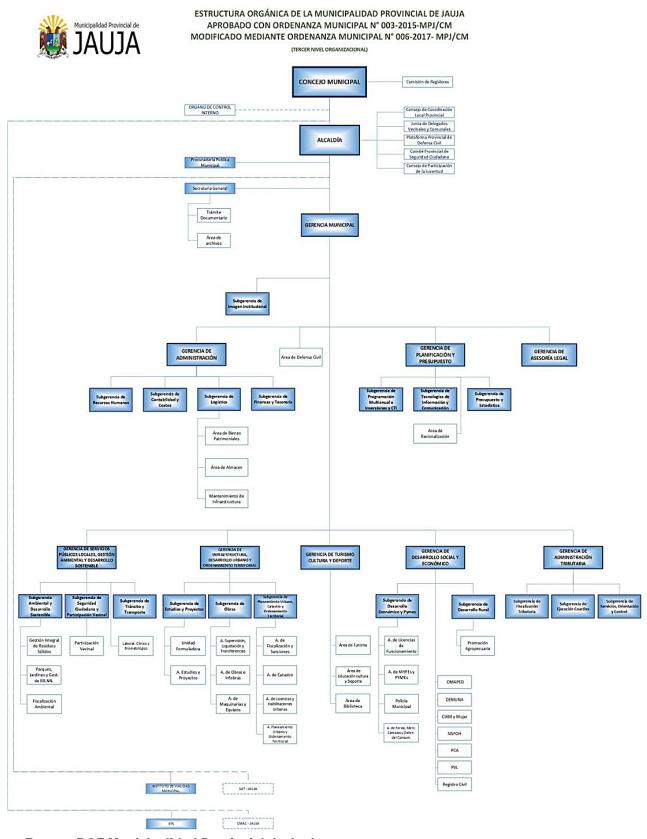
4.1. GENERALIDADES

4.1.1. MUNICIPALIDAD PROVINCIAL DE JAUJA

La municipalidad Provincial de Jauja es el órgano de gobierno local que emana de la voluntad popular, promotor del desarrollo local con personería jurídica de derecho público con autonomía, política, económica y administrativa en los asuntos de su competencia. La autonomía que la Constitución Política del Perú establece para las municipalidades radica en la facultad de ejercer actos de gobierno, administrativos y de administración, con sujeción al ordenamiento jurídico.

La jurisdicción de la Municipalidad Provincial de Jauja, comprende el ámbito territorial de treinta y cuatro distritos conformantes incluyendo el distrito de Jauja. La Municipalidad Provincial de Jauja, tiene como sede el Palacio Municipal ubicado en el jirón Ayacucho N°856, Plaza principal.

La Municipalidad Provincial de Jauja tiene como finalidad, representar al vecindario, promover la adecuada prestación de servicios públicos, fomentar el bienestar de los vecinos, así como promover el desarrollo integral, sostenible y armónico de su localidad, con sujeción a la constitución a la Ley Orgánica de Municipalidades y el Plan de Desarrollo Local Concertado Provincial.


Misión:

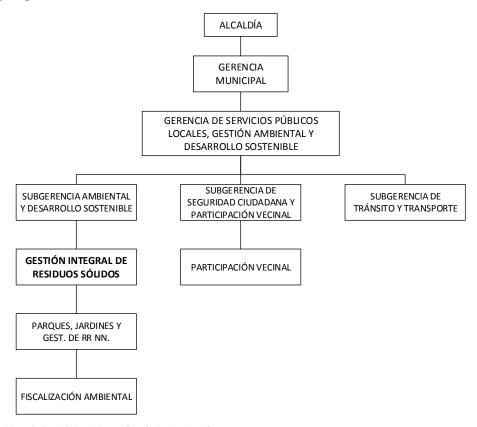
Somos una institución municipal que brinda servicios públicos oportunos, en el marco de una gestión moderna, orientada al ciudadano, de una manera eficiente, unitario, descentralizado, inclusivo, abierto, transparente, que rinde cuentas; y promotora de la participación ciudadana en la búsqueda de su desarrollo integral, que fomenta los valores, el bienestar, la identidad cultural y la seguridad de la población, basada en principios democráticos y en una cultura de derechos y deberes ciudadanos.

Visión:

Institución municipal promotora del desarrollo integral y sostenible, líder como modelo de gestión municipal, que atiende prioritariamente a los sectores más vulnerables, consolidando la prestación de servicios de calidad, con personal altamente motivado, calificado y vocación de servicio, que administra una población con alta conciencia ciudadana y tributaria; logrando una gestión por resultados eficiente, eficaz y que protege el medio ambiente.

Figura 6: Organigrama Municipalidad Provincial de Jauja

Fuente: ROF Municipalidad Provincial de Jauja.


4.1.2. INFORMACIÓN DEL ÁREA DE ESTUDIO

La subgerencia de Medio Ambiente y Desarrollo Sostenible tiene como misión planificar, coordinar, dirigir, organizar, supervisar, controlar, fiscalizar y evaluar las acciones relacionadas a proteger el ambiente y garantizando la salud pública en el ámbito de la provincia de Jauja.

La subgerencia de Medio Ambiente y Desarrollo Sostenible es responsable de los siguientes subprocesos:

- Proponer la regulación de la prevención y control de la contaminación ambiental
- Promoción de la educación ambiental
- Gestión integral de los residuos sólidos
- Promoción de la protección y conservación de los recursos naturales
- Evaluación y supervisión ambiental, así como sancionar los delitos ambientales

Figura 7: Organigrama del área de estudio

Fuente: ROF Municipalidad Provincial de Jauja

Visión:

Al año 2021 la provincia de Jauja es una ciudad saludable y competitiva con una adecuada gestión integral de los residuos sólidos mediante el uso de tecnologías sostenibles y logra altos estándares de calidad de vida saludable para su comunidad.

Misión:

El municipio de Jauja proporciona a los vecinos servicios públicos de excelencia con innovación tecnológica en el manejo de los residuos urbanos, y que contribuye a mejorar la calidad de vida de la población, 90% de hogares del distrito segregan residuos aprovechables en origen fomentando una cultura eco eficiente, ambiental y amigable con su propio entorno.

4.1.3. ESTADO ACTUAL DEL RECOJO DE RESIDUOS SÓLIDOS

4.1.3.1. Generación de residuos sólidos

En el estudio de caracterización de residuos sólidos en el distrito de Jauja se llegó a los siguientes resultados:

Tabla 5: Generación de residuos

Distrito	Pob. Total	G Per cápita	Generación	Geneación	Generación
	(2015)	Kg/Hab/día	Kg/día	Ton/día	Ton/año
Jauja	18372	0.502	9222.74	9.22	3366.30

Fuente: PIGARS Jauja 2015.

En la tabla 5 se observa el cálculo determinado a partir de los promedios de la generación per cápita, análisis que se llevó a cabo de acuerdo a la hoja de divulgación técnica HDT N° 977 "Procedimientos estadísticos para el estudio de caracterización de residuos sólidos".

Tabla 6: Generación de residuos para estudio de relleno sanitario

ORGÁNICOS	INORGÁNICOS	TOTAL FERIA	TOTAL DISPUESTO	
SEMANAL	SEMANAL	SEMANAL	EN 7 DÍAS	
33337.5	40470	12872.5	73807.5	

Fuente: Área de gestión Integral de Residuos Sólidos

En la tabla 6, se muestra el total de residuos en kilogramos semanales, datos que se obtuvieron a partir del estudio preliminar para el relleno sanitario en Jauja.

4.1.3.2. Densidad de residuos domiciliarios

La densidad es un parámetro que se emplea para dimensionar el equipamiento de almacenamiento público de los residuos sólidos. La densidad promedio de los residuos domiciliarios en el distrito de Jauja es de 185.905 Kg/m3.

Tabla 7: Densidad de residuos domiciliaros

Día	Peso	Alto (cm)	Ancho (cm)	Volumen (cm3)	Volumen (m3)	Densidad (Kg/m3)
1	34.65	76	58	200798.506	0.200798506	172.561
	37.823	74.902	58	197897.496	0.197897496	191.124
				PR	OMEDIO PARCIAL	181.843
2	38.51	74.664	58	197268.679	0.197268679	195.216
	29.047	77.941	58	205926.794	0.205926794	141.055
				PR	OMEDIO PARCIAL	168.135
3	41.72	86.1	58	227483.57	0.22748357	183.398
	19.74	44.12	58	116568.817	0.116568817	169.342
				PR	OMEDIO PARCIAL	176.370
4	44.55	80.115	58	211670.688	0.211670688	210.468
4	15.487	29.95	58	79130.464	0.079130464	195.715
				PR	OMEDIO PARCIAL	203.092
5	42.8	86.5	58	228540.404	0.228540404	187.275
	22.177	45.13	58	119237.323	0.119237323	185.990
				PR	OMEDIO PARCIAL	186.633
6	45.75	87.3	58	230654.073	0.230654073	198.349
	17.382	34.15	58	90227.223	0.090227223	192.647
				PR	OMEDIO PARCIAL	195.498
7	43.54	87.6	58	231446.699	0.231446699	188.121
	23.426	46.321	58	122384.047	0.122384047	191.414
				PR	OMEDIO PARCIAL	189.767
					PROMEDIO TOTAL	185.905

Fuente: PIGARS Jauja 2015.

En la tabla 7, se muestra el cálculo de la densidad de los residuos donde se utilizó la guía metodológica para el desarrollo del estudio de caracterización de residuos sólidos municipales (EC-RSM). El proceso se desarrolló durante siete días en los cuales se pesó y midió los residuos de bolsas escogidas al azar y llenadas a un cilindro para luego calcular la densidad dividiendo el peso entre el volumen.

4.1.3.3. Composición de residuos domiciliarios

Este parámetro ayuda a conocer los componentes que tiene los residuos sólidos para un posible programa de recuperación o reciclaje.

Tabla 8: Composición de residuos

TIPO DE RESIDUO SÓLIDO	%
Materia Orgánica	39.176%
Madera, Follaje	6.268%
Papel	2.374%
Cartón	1.998%
Vidrio	1.470%
Plástico PET	1.869%
Plástico duro	1.334%
Bolsas	6.196%
Tecnopor y Similares	0.769%
Aluminio	0.127%
Metal ferroso	2.037%
Telas, Textiles	0.449%
Caucho, cuero, jebe	0.201%
Pilas	0.114%
Restos de medicina	0.294%
Residuos de servicio higiénico	8.077%
Residuos inertes	20.254%
Otros (cabello, cera, CD,	6.993%
porcelana, lana, hueso)	0.993%
TOAL	100%

Fuente: PIGARS Jauja 2015.

Se puede observar en la tabla 8, que existe una mayor presencia de materia orgánica con 39.176% y residuos inertes con 20.254%.

4.1.3.4. Transporte

La Municipalidad de Jauja, actualmente en el año 2018, cuenta con tres vehículos compactadores con los cuales realiza el recojo de los residuos sólidos.

Tabla 9: Compactadores

N°	NOMBRE DE LA UNIDAD	AÑO	TIPO	PLACA	MARCA	CAPACIDAD (m3)	ESTADO
1	COMP N°1	2012	1	EGK-190	IZUSU	12	Regular
2	COMP N°2	2007	1	WGP-199	HYUNDAI	9	Regular
3	COMP N°3	2015	1	EGV-502	ISUZU	15	Regular

Fuente: Municipalidad de Jauja.

El recorrido de los compactadores detallados en la tabla 9, siguen las rutas asignadas en las tablas uno, dos y tres respectivamente.

4.1.3.5. Horarios de recolección

Los horarios establecidos son los siguientes:

a. Turno mañana: recolección de carreteras de limpieza pública

Vehículo compactador de placa EGV – 502

Inicio: 05:00 am

Término: 08:30 am

b. Turno Tarde: recolección de residuos sólidos domiciliaros

Vehículo compactador de placa: EGV-502

Inicio: 01:30 pm

Término: 08:30 pm

c. Turno Tarde: recolección de residuos sólidos domiciliarios

Vehículo compactador de placa: EGK-199

Inicio: 01:30 pm

Término: 08:30 pm

d. Turno Tarde: recolección de residuos sólidos domiciliarios

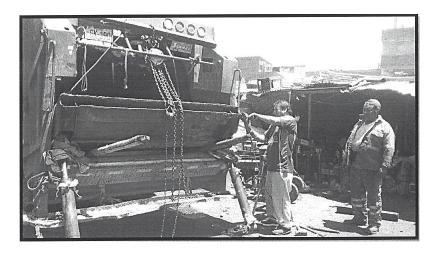
Vehículo compactador de placa: WGP-190

Inicio: 01:30 pm

Término: 08:30 pm

La recolección de los residuos sólidos domiciliarios se realiza todos los días excepto domingos y feriados.

Residuos orgánicos: lunes, miércoles y viernes


Residuos inservibles: martes, jueves y sábado

Según el decreto supremo N°014-2017-MINAM la frecuencia de recolección mínima para los residuos sólidos no aprovechables es de tres veces por semana, es por esta razón que el área de Gestión Integral de Residuos sólidos decidió distribuir de esa manera la recolección de los residuos.

4.1.3.6. Mantenimiento

El Área de Gestión Integral de Residuos Sólidos cuenta con un presupuesto asignado según elaboración del Plan Operativo Institucional (POI) de S/27 ,473.00 soles con lo cual se cubre la compra de lubricantes, filtros y servicios de mantenimiento de los vehículos compactadores. El mantenimiento preventivo se puede cubrir inmediatamente con el presupuesto asignado, en cambio el mantenimiento correctivo o modificativo se tiene que identificar el repuesto a requerir o las modificaciones necesarias y posteriormente hacer el requerimiento y si es necesario pedir una ampliación presupuestal.

Figura 8: Modificación de vehículo recolector

Fuente: Plan de mantenimiento de vehículos compactadores

En la figura 8, se observa el mantenimiento modificativo, que se realiza cuando el vehículo compactador sufre averías y los repuestos que no se encuentran en el mercado se tiene que reconstruir o mandarlos a hacer, el caso de la figura es una modificación de la cuchara de recepción de los residuos sólidos.

El Área de Gestión Integral de Residuos Sólidos realizó un plan de mantenimiento anual que se detalla en la siguiente tabla:

Tabla 10: Plan de mantenimiento

VEHÍCULO		MES DE MANTENIMIENTO/DÍA						RESPONSABLE					
VEHICULU		2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°	RESPONSABLE
ISUZU EGV-502	14	18	4	8	6	3	8	12	9	7	4	9	Mecánico
	28	-	18	22	20	24	29	26	23	21	25	23	Mecánico
ISUZU EGK-190	13	17	3	7	5	2	7	11	8	6	3	8	Mecánico
15020 EGK-190	27	-	17	21	19	23	28	25	22	20	24	22	Mecánico
HYUNDAI WGP-199	12	16	2	6	4	1	6	10	7	5	2	7	Mecánico
	26	-	16	20	18	22	27	24	21	19	23	21	Mecánico

Fuente: Plan de Mantenimiento de vehículos compactadores

Las visitas al mecánico para el mantenimiento preventivo programadas en la tabla 10, son básicamente para el cambio de lubricantes y filtros de los vehículos compactadores y revisión de algunas fallas.

4.1.3.7. Consumo de combustible

En el Plan Operativo Institucional se detalla el consumo por combustible de los vehículos recolectores. En promedio se ha calculado que el consumo diario de cada vehículo es de cuatro galones.

Tabla 11: Costo de combustible asignado

VEHÍCULO	Gal Diario	DÍAS	TOTAL MENSUAL		TO POR Gal	T	OTAL EN SOLES
ISUZU EGV-502 TURNO MAÑANA	4	30	120	S/	12.10	S/	1,452.00
ISUZU EGK-190	4	30	120	S/	12.10	S/	1,452.00
HYUNDAI WGP-199	4	30	120	S/	12.10	S/	1,452.00
ISUZU EGV-502 TURNO TARDE	4	30	120	S/	12.10	S/	1,452.00
TOTAL MENSUAL						S/	5,808.00
TOTAL ANUAL						S/	69,696.00

Fuente: Plan Operativo Institucional

4.1.3.8. Recursos Humanos

Los cargos del personal obrero en el Área de Gestión Integral de Residuos sólidos son:

- Limpieza: que está determinado por el personal que realiza el barrido de las calles de alto tránsito peatonal, como son las calles principales y parques.
- Chofer: son los encargados del manejo de los vehículos recolectores.
- Ayudante: por cada vehículo compactador hay dos ayudantes para recoger los residuos de las viviendas en el recorrido de las rutas de los vehículos.
- Segregador: encargados de realizar la separación de los residuos sólidos orgánicos de los inservibles
- Administrador Macón: se cuenta con un administrador en el botadero de Macón, encargado del registro de la entrada y salida de los desechos al botadero.

Tabla 12: Personal Obrero

N°	APELLIDOS Y NOMBRES	REMU	NERACIÓN SOLES	CARGO
1	Aquino Fierro Ruth María	S/	850.00	LIMPIEZA
2	Astahuaman Castillo Hector	S/	1,314.34	CHOFER
3	Barzola Ingaroca Abel	S/	1,140.00	AYUDANTE
4	Bonifacio De La Cruz Carlos Pablo	S/	850.00	AYUDANTE
5	Calderón Baldeón Miguel Arcangel	S/	850.00	LIMPIEZA
6	Cardenas Mercado Walter Luis	S/	1,397.14	CHOFER
7	Casimiro Vivanco Julio Cesar	S/	850.00	LIMPIEZA
8	Cavero Achichuaman Cesar Hernan	S/	1,140.00	SEGREGADOR
9	Cencho Soto Marcelino	S/	1,140.00	AYUDANTE
10	Chavez Loayza Justo Diego	S/	1,140.00	LIMPIEZA
11	Condor Mallaupoma José Luis	S/	1,000.00	ADM. MACON
12	Cordero Galarza Marcos Antonio	S/	850.00	LIMPIEZA
13	Cordero León Gustavo	S/	850.00	CHOFER
14	De La Cruz Castro Diana	S/	850.00	LIMPIEZA
15	Dueñas Collachagua David	S/	850.00	CHOFER
16	Esteban Bravo Alex Richard	S/	1,140.00	LIMPIEZA
17	Esteban Nuñez Luis Alfredo	S/	850.00	AYUDANTE
18	Felix Vasquez Rosa Carmen	S/	1,140.00	LIMPIEZA
19	Flores Rojas Emiliano Pascual	S/	1,140.00	LIMPIEZA
20	Guerrero Díaz Jesús Rafael	S/	1,140.00	SEGREGADOR
21	Hernandez García Gervacio	S/	1,257.91	LIMPIEZA
22	Hilario Robladillo Yesenia Consuleo	S/	1,140.00	LIMPIEZA
23	Miranda Blancas Paul Roberth	S/	850.00	CHOFER
24	Montañez Ortiz Juan Carlos	S/	1,140.00	LIMPIEZA
25	Moreno López Másximo	S/	1,418.25	LIMPIEZA
26	Obregon Matamoros Celestino	S/	1,421.22	GUARDIÁN
27	Paucar Espinoza Isidoro	S/	1,399.34	AYUDANTE
28	Poma Ubaldo Pablo Teodoro	S/	850.00	AYUDANTE
29	Poves Cervantes Luis Gonzalo	S/	1,140.00	AYUDANTE
30	Quispe Pérez Edgar Javier	S/	850.00	LIMPIEZA
	Ramos Espejo Adrían Maximiliano	S/	1,138.00	LIMPIEZA
	Rivera Cavez Cancio Amadeo	S/	1,140.00	LIMPIEZA
	Rodríguez Espinoza Gudelia Delfina	S/	1,140.00	LIMPIEZA
	Salazar Tenicela Javier Enrique	S/	10,555.00	SEGREGADOR
35	Suarez Peña Walter Manuel	S/	1,140.00	SEGREGADOR

Fuente: Área de Gestión Integral de Residuos Sólidos Jauja.

En la tabla 12, se presenta el cargo y remuneración de cada persona, haciendo un total de S/ 47,061.20 en remuneraciones mensuales para el Área de Gestión Integral de Residuos Sólidos en el distrito de Jauja.

4.1.3.9. Disposición final

La disposición final de los residuos sólidos municipales del distrito de Jauja actualmente se dispone en el botadero llamado Macón, que está ubicado en el distrito de Yauyos. Dicho botadero tiene un área aproximada de 1.5 hectáreas y se encuentra a una distancia de 2 kilómetros del distrito de Jauja.

Figura 9: Botadero Macón

Fuente: Google Earth

Figura 10: Disposición final

Fuente: Elaboración propia

4.2. CONSUMO DE COMBUSTIBLE POR SECTOR

Para el recojo de los residuos sólidos se distribuyó el distrito en tres sectores para el recorrido de las rutas, las cuales se pueden apreciar en las figuras una, dos y tres. El consumo diario designado por camión es de 4 galones diarios, esto debido a que considera también el recorrido hasta el botadero de Macón y el retorno al depósito municipal que es en promedio 4 km más de recorrido.

Tabla 13: Distancia por ruta

RUTA DE CAMIÓN	DISTANCIA DE RUTA (Km)	DISTANCIA TOTAL
EGV - 502	17.4	21.4
EGK - 190	18.4	22.4
WGP - 199	19.7	23.7

Fuente: elaboración propia

Respecto al rendimiento de kilómetros por galón, se consultó con los conductores de los camiones, los cuales indicaron que aproximadamente se tiene un rendimiento de 6 km/gal y los camiones son conducidos a una velocidad promedio de 5km/h.

Tabla 14: Costo por combustible

VEHÍCULO	DISTANCIA RENDIMIENTO TOTAL (Km) (Km/gal)		GALONES DIARIOS	PRECIO POR GALÓN DE GASOLINA (S/)		COSTO POR COMBUSTIBLE (S/)	
EGV - 502	21.4	6	3.566666667	S/ 13	.28 S/	47.37	
EGK - 190	22.4	6	3.733333333	S/ 13	.28 S/	49.58	
WGP - 199	23.7	6	3.95	S/ 13	.28 S/	52.46	
	TOTAL		S/	149.40			

Fuente: Elaboración propia

En la tabla 14, se detalla el consumo de combustible diario por vehículo recolector, y, además se tiene la suma de S/ 149.40 soles diarios en gasolina considerando el precio actual del galón de gasolina de 90 octanos en el mes de noviembre a S/13.28 soles, según la división de supervisión regional supervisión de comercialización de hidrocarburos líquidos de Osinergmin.

4.3. TIEMPO DE RECOLECCIÓN

Para calcular el tiempo promedio de recolección se tomó una muestra de 6 días, de lunes a sábado, ya que domingos no se realiza la recolección de los residuos sólidos. Los tiempos tomados son hasta el término del recorrido de la ruta, no se considera la disposición final.

Tabla 15: Tiempo de recolección

DÍA	VEHÍCULO	HORA DE	HORA DE	TIEMPO
DIA	VEHICULU	SALIDA	TÉRMINO	REAL
	EGV - 502	01:30	07:30	06:00
LUNES	EGK - 190	01:30	07:50	06:20
	WGP - 199	01:30	08:15	06:45
	EGV - 502	01:30	07:46	06:16
MARTES	EGK - 190	01:30	07:53	06:23
	WGP - 199	01:30	08:28	06:58
	EGV - 502	01:30	07:38	06:08
MIÉRCOLES	EGK - 190	01:30	07:48	06:18
	WGP - 199	01:30	08:09	06:39
	EGV - 502	01:30	07:27	05:57
JUEVES	EGK - 190	01:30	07:43	06:13
	WGP - 199	01:30	07:58	06:28
	EGV - 502	01:30	07:38	06:08
VIERNES	EGK - 190	01:30	07:56	06:26
	WGP - 199	01:30	08:17	06:47
	EGV - 502	01:30	07:32	06:02
SÁBADO	EGK - 190	01:30	07:49	06:19
	WGP - 199	01:30	08:04	06:34

Fuente: Elaboración propia

A partir de los tiempos registrados en la tabla 15, se pudo calcular el tiempo promedio por ruta que recorre cada vehículo para luego compararlas con el tiempo calculado y hallar el porcentaje de tiempo por paradas.

Tabla 16: Tiempo promedio de recolección

TIEMPO REAL PROM.						
EGV - 502	06:05:10					
EGK - 190	06:19:50					
WGP - 199	06:41:50					
TOTAL	19:06:50					
TIEMPO CALCULADO						
EGV - 502	3.48					
EGK - 190	3.68					
WGP - 199	3.94					
TOTAL	11.1					
INCREMENTO POR PARADAS						
42%						
·						

El tiempo calculado fue hallado con la distancia total de cada ruta y la velocidad promedio de los vehículos. Se puede apreciar en la tabla 16, que el incremento por paradas es de un 42% del tiempo total de recolección.

4.4. MODELO DE OPTIMIZACIÓN DE RUTAS

Para la construcción de la fórmula objetivo se toma como punto de partida el Método del Agente Viajero (TSP), donde se busca el recorrido de menor distancia total, pero la variante para la investigación es que no es necesario volver al punto de donde se comienza la ruta.

El modelo requiere de la multiplicación de las ocasiones que es recorrida un arco por una constante que generalmente es un costo, pero para el modelo se tomará como constante a la distancia, debido a que los costos en gasolina están directamente asociadas a la distancia total recorrida.

Para tener mapeado el distrito de Jauja, será necesario que los pasos por las esquinas del mapa sean obligatorios con lo cual se busca recoger la mayor cantidad de los residuos y tener campo visual de todas las calles para verificar si se han recogido los residuos de las calles.

Para el modelo se considera una variable a cada arco, que está compuesta por la unión de dos nodos, donde cada nodo viene a ser una esquina del mapa. Estos mapas con los nodos se encuentran en el anexo 02, y en el anexo 09, las combinaciones posibles entre los arcos del mapa.

La función objetivo creada busca minimizar la distancia total recorrida. Los vehículos compactadores tienen que dejar limpia toda la ruta, pero esto no quiere decir que se tiene

que pasar por absolutamente todas las calles del distrito, para esto se propone el paso a pie de los ayudantes por las calles no recorridas o crear centros de acopio en puntos específicos del distrito.

Restricciones del modelo:

El vehículo compactador tiene que recorrer todos los nodos, esto quiere decir que se pasará por todas las esquinas del mapa, para esto será necesario que cada nodo tenga diferentes restricciones. En el caso de que sea un camino de dos o más arcos entonces la restricción será que la suma de los arcos sea mayor igual a dos, además que la suma de un subgrupo de dos arcos adyacentes tendrá la restricción de mayor igual que uno.

Modelo matemático:

$$\min \sum_{(i,j)\in E} C_{ij} X_{ij}$$

$$s. a \sum_{j\in (\Delta^+(t),\Delta^-(t))} X_{ij} \ge 2$$

Dónde:

 $i, j = nodos \ existentes$ $\Delta^+(t) = nodo \ adyacente \ a \ i$ $\Delta^-(t) = nodo \ subyacente \ a \ j$ $C_{ij} = constante \ (distancia)$

Para aplicar la función objetivo de minimizar la distancia total recorrida primero se hizo una nueva distribución dónde se propone 6 sectores que se muestran en la siguiente figura.

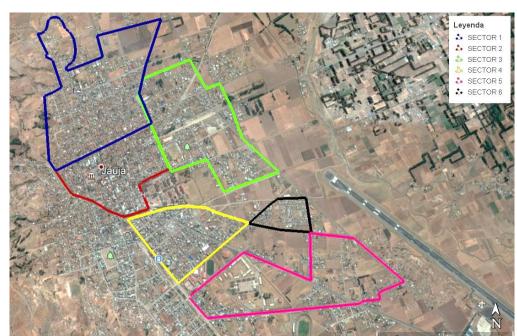


Figura 11: Sectores de recolección

Estos sectores fueron diseñados teniendo como base el plano catastral del distrito de Jauja, que está sectorizado en seis partes siguiendo las especificaciones del Manual de Levantamiento Catastral Urbano desarrollado por el Sistema Nacional Integrado de Información Catastral Predial – Perú. Los sectores propuestos no superan las 70 manzanas como sugiere el manual, además se asignará los sectores para cada vehículo recolector teniendo en cuenta que las distancias totales recorridas sean similares, ya que, los vehículos tienen similares características y capacidades.

Figura 12. Plano catastral distrito de Jauja

Fuente: Sub Gerencia de Desarrollo Urbano Municipalidad de Jauja.

Luego de aplicar el modelo en el software Lingo se obtiene los arcos sugeridos, las variables de solución son binarias ya que solo toma los valores de 0 y 1 para indicar si se recorre o no una ruta.

Para definir las nuevas rutas propuestas se prioriza el paso por los arcos sugeridos por Lingo, pero debido a que esta solución no contempla el sentido de las calles, es necesario hacer un ajuste de los mismos.

4.5. RUTAS PROPUESTAS

Figura 13: Ruta 1

Para la ruta 1 se inicia en el Centro Cívico, recorre el barrio San Lorenzo, continúa por el Jr Ayacucho, Av. Tarma y así consecutivamente tal como se muestra, hasta llegar al Jr. Gálvez, haciendo un total de 9.76 Km de recorrido total de la ruta 1. Se puede observar que el vehículo recolector pasará por todas las esquinas del mapa, pero no se recorre todas las calles, se propone un recojo a pie por los ayudantes tal como se realiza en el Jr. Junín debido a que es un jirón de uso peatonal, también se considera la implementación de centros de acopio en los lugares más céntricos para acumular los residuos de los lugares por donde no pasará el camión recolector.

Respecto a los arcos sugeridos para esta ruta, se tuvo que hacer algunos ajustes porque el sentido de las calles no permitía el cruce por todos los arcos sugeridos de la solución del Lingo que se detallan en el anexo 22. En la ruta propuesta se recorre 47 de los 62 arcos sugeridos por el software Lingo.

Para la ruta 2, inicia en el Jr. Bolívar hasta el Jr. Gálvez para luego recorrer las calles de forma transversal ya que el sentido de las calles lo permite, para finalmente terminar el recorrido en el Jr. Tacna haciendo un total de 5.51 Km de distancia de toda la ruta. En esta ruta se logró recorrer 36 de los 48 arcos sugeridos por la solución del Lingo que se detallan en el anexo 23.

Figura 15: Ruta 3

Para la ruta 3, comienza en la Av. Clodoaldo Espinoza, pasa por la Av. Evitamiento y sigue la secuencia que se muestra en la figura, hasta llegar nuevamente a la Av. Evitamiento. En esta ruta se pasa por 48 de los 59 arcos sugeridos por la solución del Lingo que se detallan en el anexo 24. Para esta ruta solo se recogerá 4 calles a pie por los ayudantes, debido a que en esta ruta se cubre casi la totalidad de los arcos. La distancia total de la ruta es de 7.81 Km.

Figura 16: Ruta 4

Para la ruta 4, se inicia en la Av. Huarancayo y sigue la secuencia hasta llegar a la Av. Aviación, la ventaja de esta ruta es que la mayoría de sus calles son de doble vía, permitiendo mayor fluidez. La ruta hace un total de 4.81 Km, logrando recorrer 31 de los 41 arcos sugeridos por la solución del Lingo que se detallan en el anexo 25.

Figura 17: Ruta 5

Para la ruta 5, inicia en la Av. Héroes de la Breña, pasa por Jacinto Ibarra, y sigue la ruta hasta llegar a la Av. Francisco Carlé. Esta ruta presenta calles que son doble vía, lo cual facilita el recorrido por la mayoría de los arcos. La distancia total de la ruta es 5.25 Km, logrando recorrer 17 de los 21 arcos sugeridos por la solución del Lingo que se detallan en el anexo 26.

Figura 18: Ruta 6

Para la ruta 6, comienza y termina en la Av. Francisco Carlé, para este caso las calles son de doble vía. La distancia total de la ruta es de 1.33 Km, logrando recorrer 16 de los 21 arcos sugeridos en la solución del Lingo que se detallan en el anexo 27.

Tabla 17: Distancia de rutas propuestas

VEHÍCULO	RUTAS	DISTANCIA (Km)
EGV - 502	1	9.76
EGK - 190	2,3	13.32
WGP - 199	4,5 Y 6	11.39
TO	34.47	

Fuente: Elaboración propia

Se distribuye las rutas para los tres vehículos recolectores tal como se muestra en la tabla 17, y se determina que la distancia total de las 6 rutas propuestas es 34.47 Km, distancia que es mucho menor a los 55.5 Km iniciales sin el modelo de optimización.

4.6. AHORRO DE COMBUSTIBLE DE LAS RUTAS PROPUESTAS

Para calcular el ahorro por galones de combustible consumidos en la recolección, se halla primero el tiempo de recolección de cada ruta, considerando un incremento por paradas de 42% hallado en la tabla 15.

Tabla 18: Tiempo de recorridos por ruta propuesta

RUTA	DISTANCIA (Km)	VELOCIDAD PROMEDIO (Km/h)	TIEMPO (h)	INCREMENTO POR PARADAS	TIEMPO TOTAL
1	9.76	5	1.952	42%	2.770185243
2	5.51	5	1.102	42%	1.563905808
3	7.81	5	1.562	42%	2.216715856
4	4.81	5	0.962	42%	1.36522449
5	5.25	5	1.05	42%	1.49010989
6	1.33	5	0.266	42%	0.377494505
		TOTAL			9.783635793

Fuente: Elaboración propia

En la tabla 18, se observa que el tiempo total de recolección es de 9,78 horas, que consideran el 42% de paradas, ya sean paradas por la propia recolección o posibles imprevistos.

Tabla 19: Ahorro por consumo de combustible

TIEMPO MODELO	9.783635793
TIEMPO INICIAL	19.11
REDUCCIÓN	48.80%
AHORRO DIARIO (h)	9.326364207
VELOCIDAD PROM. (Km/h)	5
AHORRO DIARIO (Km)	46.63182104
RENDIMIENTO (Km/gal)	6
GALONES AHORRADO	7.771970173
COSTO GALÓN 90 OCTANOS	13.28
AHORRO DIARIO	S/ 103.21
AHORRO ANUAL	S/ 32,718.13

Para calcular el ahorro en combustible se tomó en cuenta el ahorro diario expresado en horas de la recolección de los residuos sólidos, a partir de este dato se pudo calcular el ahorro anual que vendría a ser la suma de S/ 32,718.13 soles, siendo un ahorro considerable comparado con los S/ 69,696.00 soles destinados para el consumo de combustible para el Área de Gestión Integral de Residuos Sólidos del distrito de Jauja.

4.7. DISCUSIÓN DE RESULTADOS

Al realizar el diagnóstico del estado actual de la recolección de residuos sólidos domiciliarios en el distrito de Jauja, mediante la observación y el análisis documentario, se pudo observar que no se tiene un ruteo óptimo, ya que las rutas fueron determinadas de manera empírica, además se recorre en algunos casos más de una vez una calle. Es por ello que se propone la optimización de rutas mediante el método del agente viajero TSP; de la misma forma que (José Taquia, 2013) en su tesis, determina que el método del agente viajero TSP es aplicable para el ruteo de vehículos para la recolección de residuos sólidos y que además mejora la rentabilidad reduciendo los costos operativos.

La sectorización del distrito de Jauja en seis partes fue determinada teniendo como base el plano catastral del distrito de Jauja, donde también se establecen seis sectores, de acuerdo al Manual de Levantamiento Catastral Urbano que sugiere un máximo de 70 manzanas por sector, además de ello también se tiene como límites las avenidas o vías principales. En la investigación se asigna las rutas para cada vehículo compactador, para

el primer vehículo se asigna la ruta 1, para el segundo vehículo la ruta 2 y 3 y para el tercer vehículo se asigna las rutas 4, 5 y 6.

La optimización de rutas propuesta se basa en la creación de nuevas rutas donde la distancia total sea mínima para reducir el costo por consumo de combustible, además de ello las rutas tienen que seguir el sentido de las calles, es por eso que la solución que se obtiene en el software Lingo es ajustada a la realidad. Las rutas propuestas logran un ahorro anual de S/ 32,718.13 soles y reduce el tiempo de recolección en un 48.8%.

CONCLUSIONES

- Se propuso un modelo optimizado de rutas para el recojo de residuos sólidos en el distrito de Jauja, utilizando el método del Agente Viajero (TSP) que logra un ahorro anual en consumo de combustible de S/ 32,718.13 soles, además reduce el tiempo de recolección en un 48.8%.
- Se detalló el estado actual del recojo de residuos sólidos en el distrito de Jauja, mencionando el presupuesto asignado según el Plan Operativo Institucional (POI), horarios de recolección, personal obrero, mantenimiento, composición de los residuos sólidos, densidad, generación y transporte.
- 3. Los costos de consumo de combustible por sector fueron calculados mediante la distancia total, el rendimiento y el costo por galón de gasolina de 90 octanos, obteniéndose para el sector 1 un costo diario de S/ 47.37, para el sector 2 un costo de S/ 49.58 y para el sector 3 un total de S/ 52.46 soles respectivamente.
- 4. Con la función objetivo de minimizar la distancia total recorrida mediante el método del Agente Viajero (TSP), se pudo obtener una serie de arcos sugeridos para las nuevas rutas, dichas rutas fueron ajustadas de acuerdo al sentido de las calles para no generar desorden vehicular y garantizar la factibilidad de recorrer las rutas propuestas.
- 5. La propuesta de las 6 nuevas rutas de recolección, logra reducir la distancia total recorrida y por consiguiente reducir el tiempo total de recolección, logrando así un ahorro anual calculado de S/ 32,718.13.
- 6. Una de las principales dificultades en el desarrollo de la investigación fue que las calles del distrito de Jauja en su mayoría son de un solo sentido, esto fue un inconveniente a la hora de ajustar las rutas propuestas para no alterar el sentido del tráfico.

RECOMENDACIONES

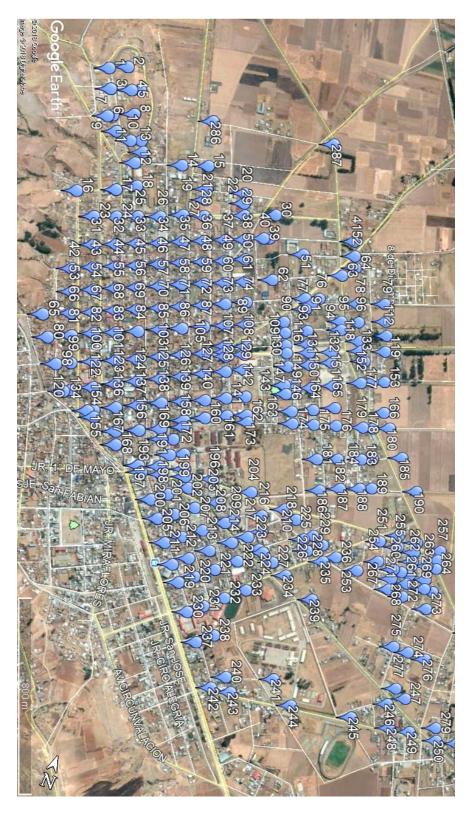
- Se recomienda al Área de Gestión Integral de Residuos Sólidos mantener un buen control de sus vehículos compactadores, y adecuado mantenimiento para asegurar el correcto servicio de recolección de los residuos sólidos domiciliarios.
- 2. El modelo optimizado de rutas genera un ahorro considerable en combustible y tiempo de recorrido, generando así el menor tiempo del personal expuesto a los residuos sólidos, pero esto debe estar acompañado campañas de sensibilización para los trabajadores y también al público en general.
- Existen muchos métodos para resolver el problema del transporte, pero de soluciones complejas, queda para futuras investigaciones encontrar otra solución que incluya restricciones de capacidad o de tiempo.
- 4. Se recomienda al Área de Gestión Integral de Residuos Sólidos de la Municipalidad provincial de Jauja, implementar contenedores de basura en las calles, avenidas y principales barrios de la ciudad para evitar la acumulación de desechos en la vía pública.
- 5. Es necesario que los conductores estén correctamente capacitados para operar los vehículos de acuerdo a las especificaciones técnicas de los fabricantes, también evitar que los vehículos se sobrecarguen ya que esto generaría un consumo mayor de combustible en la operación del motor.
- 6. Se recomienda el método del agente viajero como solución al ruteo de vehículos de recolección de residuos sólidos, pero además se puede plantear el problema teniendo en cuenta otras restricciones, ya sean restricciones como la capacidad, flota heterogénea o de tiempo, además de tomar en cuenta las características del terreno por dónde circulan los vehículos.

REFERENCIAS BIBLIOGRÁFICAS

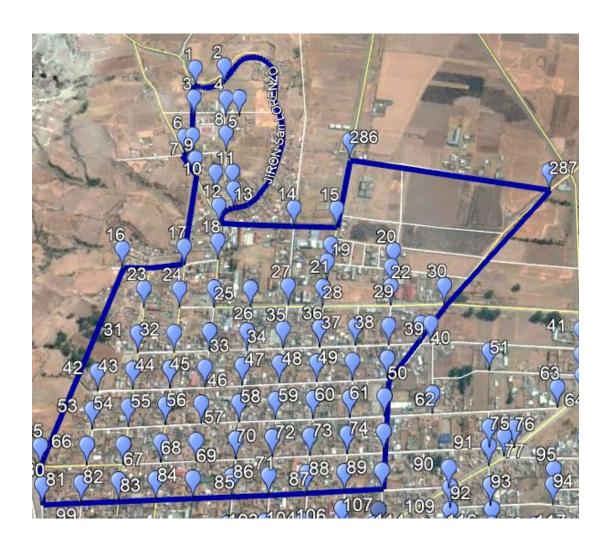
- SOCIEDAD NACIONAL DE INDUSTRIAS. Lima entre las ciudades con mayor costo logístico de transporte de América Latina - Sociedad Nacional de Industrias. enero 23 [online]. 2017. [Accessed 27 April 2019]. Available from: http://www.sni.org.pe/lima-entre-las-ciudades-con-mayor-costo-logistico-entransporte-de-america-latina/
- MINAM. Plan Nacional De Acción Ambiental Perú 2011 2021 [online]. 2011.
 Diario Oficial El Peruano. Available from: http://www.minam.gob.pe/wp-content/uploads/2013/08/plana_2011_al_2021.pdf
- MINAM. Plan Nacional de Gestión Integral de Residuos Sólidos 2016-2024 [online].
 2016. ISBN 9789977621074. Available from:
 http://sinia.minam.gob.pe/documentos/plan-nacional-gestion-integral-residuos-solidos-2016-2024
- 4. OCDE. Evaluación del Desempeño Ambiental Perú 2016. 2016.
- CORREA-ESPINAL, Alexander Alexander, GÓMEZ-MONTOYA, Rodrigo A. and HERNANDEZ-VAHOS, José D. Efficient Preparation of Orders in a Distributor Coffee Company Using Tabu Search. *Tecciencia*. 2013. Vol. 8, no. 15, p. 59–68.
- 6. SIMÓN, Silvia, DEMALDÉ, José, HERNÁNDEZ, José and CARNERO, Mercedes. Optimización de Recorridos para la Recolección de Residuos Infecciosos. Información tecnológica [online]. 2013. Vol. 23, no. 4, p. 125–132. [Accessed 15 April 2018]. DOI 10.4067/S0718-07642012000400014. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642012000400014&Ing=en&nrm=iso&tIng=en
- 7. PÉREZ RAVE, Jorge Ivan and JARAMILLO ÁLVAREZ, Gloria Patricia. Espacio literario relevante sobre el problema del vendedor viajero (TSP): contenido, clasificación, métodos y campos de inspiración. *Production*. 2013. Vol. 23, no. 4, p. 866–876. DOI 10.1590/s0103-65132013005000003.
- SUAREZ-CHILMA, Victor F., SARACHE, William A. and COSTA, Yasel J. Una Solución al Enrutamiento de Vehículos en Ciudades Montañosas Considerando Aspectos Ambientales y Económicos. *Información tecnológica* [online]. 2018. Vol. 29, no. 3, p. 3–14. DOI 10.4067/S0718-07642018000300003. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642018000300003&Ing=en&nrm=iso&tIng=en
- 9. DAZA, Julio Mario, MONTOYA, Jairo R and NARDUCCI, Francesco. SOLVING THE CAPACITATED VEHICLE ROUTING PROBLEM USING A TWOPHASE METAHEURISTIC PROCEDURE. *Revista EIA*. 2014. No. 12, p. 23–38.
- CARBONEL NAMAY, Teresa de Jesús. Modelo matemático de planificación de rutas para minimizar los costos del reparto de la empresa San Isidro Labrador S.R.L. en el año 2015 [online]. Universidad Cesar Vallejo, 2015. Available from: http://repositorio.ucv.edu.pe/handle/UCV/126

- 11. TIRADO MELÉNDEZ, Sarita Margareth. Impacto económico de la mejora de las rutas de recolección de residuos sólidos en la ciudad de Cajabamba, en el rubro de costos de limpieza pública de la Municipalidad Provincial de Cajabamba [online]. Universidad Privada del Norte, 2013. Available from: http://hdl.handle.net/11537/10542
- 12. GUSTAVO, Anselmo Prada Cuadra and TORRES, William Yrvin Paredes. "DISEÑO DE OPTIMIZACIÓN DE RUTAS DE TRANSPORTE TSP Y PLAN DE ACCIÓN PARA INCREMENTAR LA RENTABILIDAD DE PERÚ GLP S.A.C. TRUJILLO." Universidad Privada del Norte, 2017.
- 13. TAQUIA, José Alberto. Optimización de rutas en una empresa de recojo de residuos sólidos en el distrito de los Olivos [online]. Pontificia Universidad Católica del Perú, 2013. Available from: http://tesis.pucp.edu.pe/repositorio/handle/123456789/4603
- 14. HILLIER, Frederick S. and LIEBERMAN, Gerald J. *Introducción a la Investigación de operaciones*. 2013. ISBN 978-607-15-0308-4.
- 15. TAHA, Hamdy a. *Investigación de operaciones Modelo de transbordo* [online]. Novena Ed. 2012. ISBN 9786077331391. Available from: https://jrvargas.files.wordpress.com/2009/01/investigacic3b3n-de-operaciones-9na-edicic3b3n-hamdy-a-taha-fl.pdf
- JIMÉNEZ, Guillermo, LUIS, Lozano, MARTÍNEZ, A Moncayo, ABRIL, Iris and SALAZAR, Martínez. *Investigación de Operaciones*. Primera Ed. 2014. ISBN 9786074389234.
- OLIVERA, Alfredo. Heurísticas para problemas de ruteo de vehículos [online].
 2004. ISBN 0797-6410. Available from: https://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR0408.pdf
- 18. WASSAN, N. A. and OSMAN, I. H. Tabu search variants for the mix fleet vehicle routing problem. *Journal of the Operational Research Society*. 2002. Vol. 53, no. 7, p. 768–782. DOI 10.1057/palgrave.jors.2601344.
- 19. DANTZIG, G, FULKERSON, R and JOHNSON, S. Solution of a large-scale traveling-salesman problem. *The operations research society of america*. 1954. Vol. 2, p. 410.
- 20. BERNAL TORRES, César Augusto. *Metodología de la inestigación*. Tercera Ed. 2010. ISBN 9789586991285.
- HERNANDEZ SAMPIERI, Roberto, FERNANDES COLLADO, Carlos and BAPTISTA LUCIO, Pilar. *Metodología de la Investigación*. Quinta Ed. 2010. ISBN 9786071502919.
- 22. CARRASCO DÍAZ, Sergio. Metodología de la Investigación Científica. Lima, 2008.

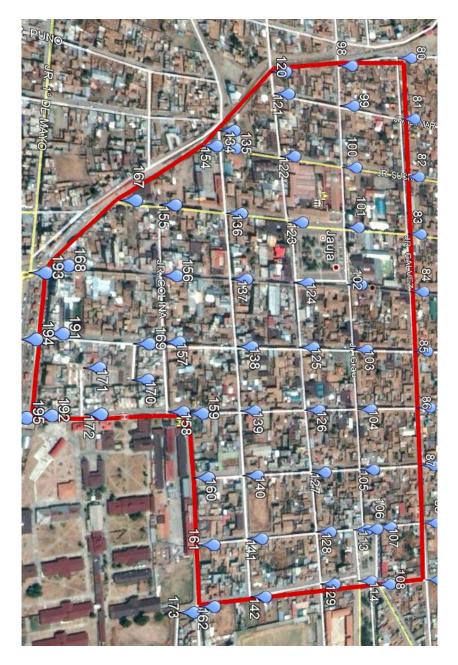
ANEXOS


ANEXO 01. MATRIZ DE CONSISTENCIA

PROPUESTA DE RUTAS OPTIMIZADAS PARA EL RECOJO DE RESIDUOS SÓLIDOS DOMICILIARIOS EN EL DISTRITO DE JAUJA EN EL AÑO 2018


PROBLEMA	OBJETIVOS	MARCO TEÓRICO	HIPÓTESIS	VARIABLES Y DIMENSIÓN	INDICADORES	METODOLOGÍA
GENERAL	GENERAL	ANTECEDENTES	GENERAL	VARIABLE 1		MÉTODO GENERAL
¿Cómo se diseña un sistema optimizado de rutas para el	Proponer un diseño optimizado de rutas para el	En el artículo científico de (6). Que tiene como título	El diseño de un sistema optimizado de rutas	Modelado De Optimización De Rutas		cuantitativo
recojo de residuos sólidos domiciliarios en el distrito de Jauja, utilizando el método	recojo de residuos sólidos domiciliarios en el distrito de Jauja, utilizando el método	"Preparación eficiente de órdenes en una compañía distribuidora de café	utilizando el método del agente viajero TSP, disminuye el costo de	DIMENSIONES		DISEÑO DE LA INVESTIGACIÓN
del agente viajero TSP, en el año 2018?	del agente viajero TSP, en el año 2018.	usando búsqueda tabú"	transporte en el recojo de residuos sólidos domiciliarios en el distrito	Minimizar Tiempo De Recorrido Por Ruta	Tiempo de recorrido por ruta	Pre- experimental
ESPECÍFICOS	ESPECÍFICOS	El artículo científico de (7). Que tiene como título "Optimización de	de Jauja.		(h)	TIPO DE INVESTIGACIÓN
¿Cuál es el estado actual del sistema de rutas de recojo de	Definir el estado actual del sistema de recojo de	Recorridos para la Recolección de Residuos	ESPECÍFICOS	Minimizar Distancia Total Recorrida	Distancia de rutas en (Km)	Aplicada
residuos sólidos domiciliarios en el distrito de Jauja en el año	residuos sólidos domiciliaros en el distrito de Jauja en el	Infecciosos" (14), realizó la	Es posible definir el estado actual del sistema de	Minimizar Consumo De	, ,	ALCANCE O NIVEL DE LA INVESTIGACIÓN
2018? ¿Es posible calcular los	año 2018. Determinar los costos	investigación: "Optimización de rutas en	recojo de residuos sólidos domiciliarios en el distrito de Jauja en el año 2018.	Combustible	Costo de consumo de combustible por	Explicativo
costos incurridos por transporte en el recojo de residuos sólidos domiciliarios	incurridos por el transporte en el recojo de los residuos	una empresa de recojo de residuos sólidos en el distrito de Los Olivos"	Es posible determinar los		compactador	POBLACIÓN Y MUESTRA
en el distrito de Jauja en el año 2018?	sólidos domiciliarios por sector.	BASES TEÓRICAS	costos incurridos por transporte en el recojo de			Población: La población está determinada por todas las calles que conforman el distrito de Jauja.

¿Cómo se determina la factibilidad técnica de las rutas propuestas para el recojo de residuos sólidos domiciliarios	Determinar la factibilidad técnica de las rutas propuestas con el método del agente viajero TSP.	Modelo de trasporte Se busca encontrar el plan	los residuos sólidos domiciliarios por sector. Es posible determinar la	VARIABLE 2 Costo Del Sistema De		Muestra: La muestra es censal, porque está determinada por la totalidad de las calles que conforman
en el distrito de Jauja utilizando el método del agente viajero TSP?		de distribución que minimice el costo total de	factibilidad técnica de las rutas propuestas mediante el método del agente viajero TSP.	Transporte De Recolección De Los Residuos.		los 16 barrios del distrito de Jauja, esto para que al aplicar la función objetivo se considere los 293 nodos formados por las intersecciones de las
¿Cómo se determina la factibilidad económica de las rutas propuestas para el	Determinar la factibilidad económica de la propuesta de rutas optimizadas para el	distribución y satisfaga las restricciones de la oferta y	Es posible determinar la factibilidad económica de	Ahorro En Combustible	% De ahorro en combustible	calles y de esta manera la ruta óptima recorra todos con una distancia mínima, además que los vehículos
recojo de residuos sólidos domiciliarios en el distrito de Jauja, utilizando el método del agente Viajero TSP?	recojo de residuos sólidos domiciliarios en el distrito de Jauja con el método del agente viajero TSP.	la demanda.	la propuesta de rutas mediante el método del agente viajero TSP.	Anono En compustible	Combustible	recolectores puedan cubrir la mayor parte del distrito de Jauja.
		Problema del agente				
		viajero TSP es un problema de optimización, dónde un				TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS
		agente viajero pretende visitar una sola vez cada ciudad de un conjunto de				Observación/análisis documentario. Software Lingo, Google Earth.
		ellas (previamente establecidas), además debe regresar al punto de dónde partió.				


ANEXO 02. NODOS DEL DISTRITO DE JAUJA

ANEXO 03. MAPA PROPUESTO CON NODOS

ANEXO 04. MAPA 2 PROPUESTO CON NODOS

ANEXO 05. MAPA 3 PROPUESTO CON NODOS

ANEXO 06. MAPA 4 PROPUESTO CON NODOS

ANEXO 07. MAPA 5 PROPUESTO CON NODOS

ANEXO 08. MAPA 6 PROPUESTO CON NODOS

ANEXO 09. ARCOS POSIBLES MAPA 1

			DISTANCIA
ARCO	INICIO	FIN	(m)
1	1	2	77.97
2	1	3	84.85
3	2	4	95.7
4	3	4	85.44
5	3	7	108.31
6	4	5	36.23
7	4	8	99.72
8	5	8	103.9
9	6	7	21.9
10	6	9	70.5
11	7	8	88.26
12	9	12	147.44
13	9	17	242.22
14	10	11	44.29
15	10	12	92.24
16	11	13	47.44
17	12	13	57.17
18	12	14	188.31
19	14	15	111.87
20	14	27	209.54
21	15	286	185.1
22	15	19	94.2
23	16	17	154.37
24	17	18	87.85
25	17	24	109.9
26	18	25	130.2
27	19	15	96.54
28	19	20	165.83
29	19	21	46.23
30	20	22	41.74
31	21	22	166.6
32	21	28	66.24
33	22	29	52.23
34	23	31	118.76
35	24	32	112.69
36	25	26	93.67
37	25	33	112.26
38	26	27	95.92
39	26	34	113.16
40	27	28	86.11
41	27	35	112.1

85	54	55	88.05	106	68	83	88.68
86	54	67	88.75	107	69	70	92.35
87	55	56	89.52	108	70	71	90.52
88	55	68	94.02	109	70	85	90.13
89	56	57	93	110	71	72	91.89
90	57	58	90.91	111	71	86	89.49
91	57	70	92.66	112	72	73	93.72
92	58	59	90.98	113	72	87	90.2
93	58	71	94.71	114	73	74	88.63
94	59	60	93.19	115	73	88	89.78
95	59	72	91.84	116	74	89	88.55
96	60	61	85.05	117	80	81	95.83
97	60	73	87.85	118	81	82	91.58
98	61	74	88.04	119	82	83	92.94
99	65	66	109.7	120	83	84	90.82
100	65	80	96.58	121	84	85	93.95
101	66	67	89.5	122	85	86	93.11
102	66	81	91.38	123	86	87	94.29
103	67	68	92.84	124	87	88	94.46
104	67	82	86.87	125	88	89	91.63
105	68	69	87.74				

ANEXO 10. ARCOS POSIBLES MAPA 2

ARCO	INICIO	FIN	DISTANCIA (m)
1	80	81	95.83
2	80	98	112.55
3	81	82	91.58
4	81	99	112.46
5	82	83	92.94
6	82	100	114.7
7	83	84	90.82
8	83	101	109.94
9	84	85	93.95
10	85	86	93.11
11	85	103	108.56
12	86	87	94.29
13	86	104	110.1
14	87	88	94.46
15	87	105	114.95
16	88	89	91.63
17	88	107	85.65
18	89	108	92.95
19	98	99	57.55
20	98	120	115.27
21	99	100	92.29
22	99	121	111.17
23	100	101	91.96
24	100	122	104.77
25	101	102	85.58
26	101	123	95.52
27	102	103	99.2
28	102	124	91.28
29	103	104	90.86
30	103	125	90.94
31	104	105	91.63
32	104	126	91.72
33	105	106	90.73
34	105	127	85.08
35	106	107	23.91
36	106	113	17.4
37	107	108	85.08
38	108	114	33.02
39	113	114	80.49
40	113	128	65.27
41	114	129	65.41
42	120	121	31.62

ANEXO 11. ARCOS POSIBLES MAPA 3

ARCO	INICIO	FIN	DISTANCIA (m)	43	97	112	61.61
1	39	40	25.08	44	108	114	33.02
2	39	50	119.86	45	108	109	173.84
3	40	41	375.5	46	109	110	100.38
4	40	62	175.43	47	109	115	31.09
5	41	52	60.83	48	110	111	228.64
6	50	61	92.55	49	110	116	36.41
7	52	51	226.89	50	111	112	124.65
8	52	64	47.2	51	111	118	43.39
9	61	62	112.7	52	112	119	61.73
10	61	74	88.06	53	114	129	65.41
11	62	290	140.32	54	114	115	182.23
12	290	63	174.89	55	115	116	100.6
13	290	75	89.29	56	115	130	54.64
14	63	64	70.95	57	116	117	102.29
15	63	76	153.09	58	116	131	51.83
16	64	78	159.27	59	117	118	131.94
17	74	75	255.94	60	117	132	46.61
18	74	89	89.9	61	118	119	115.05
19	75	76	62.06	62	118	133	45.74
20	76	77	34.8	63	119	153	137.24
21	77	78	198.99	64	129	130	192.87
22	77	91	43.57	65	129	142	114.94
23	78	79	125.44	66	130	131	99.21
24	78	96	79.32	67	130	144	78.98
25	79	97	77.92	68	131	132	99.7
26	89	90	162.3	69	131	150	98.87
27	89	108	89.38	70	132	151	100.2
28	90	91	111.91	71	133	152	98.61
29	90	108	185.07	72	142	162	78.37
30	90	92	47.67	73	143	144	19.36
31	91	93	94.76	74	143	146	38.23
32	92	93	101.31	75	144	145	18.82
33	92	109	59.37	76	145	149	18.59
34	93	94	115.26	77	146	147	18.53
35	93	110	57.44	78	147	148	17.95
36	94	291	79.65	79	147	163	77.46
37	94	95	39.32	80	148	149	19.57
38	95	96	75.24	81	149	150	80.06
39	96	97	126.19	82	150	151	100.29
40	97	112	63.08	83	150	164	95.49
41	96	291	31.09	84	151	177	125.18
42	291	111	48.99	85	151	165	95.11

177	152	51.82	104	178	179	43.7
177	178	194.09	105	178	183	139.26
152	153	55.47	106	179	180	80.36
153	166	137.15	107	179	184	135.96
162	173	29.24	108	180	185	143.48
162	163	196	109	181	182	96.43
163	164	96.37	110	181	186	138.59
163	174	50.61	111	182	183	103.52
164	165	99.06	112	182	187	134.84
164	175	64.03	113	183	184	50.27
165	176	78.05	114	183	188	131.38
166	180	74.34	115	184	185	135.3
173	174	196.58	116	184	189	136.13
174	175	96.1	117	185	190	165.78
175	176	100.85	118	186	187	94.13
175	181	150.37	119	187	188	91.38
176	178	112.36	120	188	189	57.11
176	182	145.61	121	189	190	207.34
	177 152 153 162 162 163 163 164 165 166 173 174 175 175	177 178 152 153 153 166 162 173 162 163 163 164 163 174 164 165 165 176 166 180 173 174 175 176 175 181 176 178	177 178 194.09 152 153 55.47 153 166 137.15 162 173 29.24 162 163 196 163 164 96.37 163 174 50.61 164 165 99.06 164 175 64.03 165 176 78.05 166 180 74.34 173 174 196.58 174 175 96.1 175 176 100.85 175 181 150.37 176 178 112.36	177 178 194.09 105 152 153 55.47 106 153 166 137.15 107 162 173 29.24 108 162 163 196 109 163 164 96.37 110 163 174 50.61 111 164 165 99.06 112 164 175 64.03 113 165 176 78.05 114 166 180 74.34 115 173 174 196.58 116 174 175 96.1 117 175 176 100.85 118 175 181 150.37 119 176 178 112.36 120	177 178 194.09 105 178 152 153 55.47 106 179 153 166 137.15 107 179 162 173 29.24 108 180 162 163 196 109 181 163 164 96.37 110 181 163 174 50.61 111 182 164 165 99.06 112 182 164 175 64.03 113 183 165 176 78.05 114 183 166 180 74.34 115 184 173 174 196.58 116 184 174 175 96.1 117 185 175 176 100.85 118 186 175 181 150.37 119 187 176 178 112.36 120 188	177 178 194.09 105 178 183 152 153 55.47 106 179 180 153 166 137.15 107 179 184 162 173 29.24 108 180 185 162 163 196 109 181 182 163 164 96.37 110 181 186 163 174 50.61 111 182 183 164 165 99.06 112 182 187 164 175 64.03 113 183 184 165 176 78.05 114 183 188 166 180 74.34 115 184 185 173 174 196.58 116 184 189 175 176 100.85 118 186 187 175 181 150.37 119 187 188 176 178 112.36 120 188 189

ANEXO 12. ARCOS POSIBLES MAPA 4

ARCO	INICIO	FIN	DISTANCIA (m)
1	193	194	80.9
2	193	197	109.23
3	194	195	97.11
4	194	198	79.49
5	195	196	110.96
6	195	199	43.35
7	196	203	97.8
8	196	204	180.71
9	197	200	90.62
10	197	198	74
11	198	199	94.5
12	198	201	89.86
13	199	196	102.17
14	199	202	89
15	199	203	132.49
16	204	210	161.8
17	200	205	101.72
18	200	201	74.13
19	201	202	96.39
20	201	206	102.84
21	202	203	97.22
22	202	207	97.93
23	203	204	149.3
24	203	208	93.05
25	203	209	102.15
26	204	210	158.72
27	205	211	96.8
28	205	206	74.4
29	206	207	92.08
30	206	212	95.28
31	207	208	100.97
32	207	213	92.38
33	208	209	36.13
34	208	214	87.91
35	209	216	123.82
36	209	215	95.26
37	216	210	101.5
38	216	217	70.24
39	210	218	64.42
40	211	212	71.92

ANEXO 13. ARCOS POSIBLES MAPA 5

ARCO	INICIO	FIN	DISTANCIA (m)
1	237	238	83.66
2	237	242	204.32
3	238	240	188.91
4	239	277	562.85
5	240	241	208.9
6	240	243	60.9
7	242	243	84.63
8	243	244	271.02
9	244	245	285.31
10	245	246	175.05
11	245	248	184.49
12	246	247	84.94
13	246	248	104.78
14	247	279	204.76
15	248	249	99
16	249	250	132.15
17	250	282	102.36
18	279	282	120
19	277	247	82.98
20	277	274	156.98
21	274	275	69.25
22	274	276	90.15
23	274	273	205.25
24	273	278	232.51
25	278	179	451.53
26	278	280	43.47
27	280	281	55.04
28	280	282	447.18
29	281	285	488.85
30	282	283	129.49
31	283	284	49.69
32	284	285	212.25

ANEXO 14. ARCOS POSIBLES MAPA 6

ARCO	INICIO	FIN	DISTANCIA (m)
1	236	251	202.5
2	236	253	110.2
3	251	252	91.03
4	251	254	89.3
5	252	256	89.07
6	252	255	49.68
7	253	254	101.81
8	253	271	172.12
9	256	257	119.17
10	256	258	42.24
11	257	259	43.57
12	255	293	81.53
13	255	260	105.21
14	293	258	43.97
15	293	261	101.85
16	258	259	115.58
17	258	262	42.02
18	259	264	39.15
19	262	265	59.75
20	262	263	71.27
21	263	266	60.81
22	263	264	45.57
23	264	270	103.84
24	260	261	39.27
25	260	267	41.52
26	261	265	40.93
27	265	266	80
28	265	268	40.65
29	266	269	40.9
30	267	271	46.52
31	267	268	77.15
32	268	272	60.1
33	268	269	87.97
34	269	270	41.74
35	270	273	76.11
36	271	272	74.55
37	272	273	129.45

ANEXO 15. FÓRMULA LINGO MAPA 1

77.97*X001002+84.85*X001003+95.7*X002004+85.44*X003004+108.31*X003007+36.23 *X004005+99.72*X004008+103.9*X005008+21.9*X006007+70.5*X006009+88.26*X0070 08+147.44*X009012+242.22*X009017+44.29*X010011+92.24*X010012+47.44*X011013 +57.17*X012013+188.31*X012014+111.87*X014015+209.54*X014027+185.1*X015286+ 94.2*X015019+154.37*X016017+87.85*X017018+109.9*X017024+130.2*X018025+96.54 *X019015+165.83*X019020+46.23*X019021+41.74*X020022+166.6*X021022+66.24*X0 21028+52.23*X022029+118.76*X023031+112.69*X024032+93.67*X025026+112.26*X02 5033+95.92*X026027+113.16*X026034+86.11*X027028+112.1*X027035+91.35*X02828 9+101.57*X028036+80.5*X289029+102.1*X289037+135.8*X029030+103.77*X029038+1 15.64*X030039+409.86*X030287+536.98*X287286+93.03*X031032+93.43*X031043+91. 2*X032033+92.7*X032044+93.55*X033034+89.9*X034035+91.17*X034046+93.55*X035 036+87.38*X035047+89.84*X036037+88.17*X036048+84.47*X037038+91*X037049+79. 81*X038039+86.75*X038050+112.18*X039050+85.54*X042043+90.39*X042053+93.56* X043044+94.34*X043054+88.04*X044045+90.27*X044055+93.02*X045046+94.36*X046 047+88.96*X046057+94.95*X047048+87.66*X047058+90.31*X048049+91.39*X048059+ 86.5*X049050+94.27*X049060+94.51*X050061+90*X053054+86.96*X053066+88.05*X0 54055+88.75*X054067+89.52*X055056+94.02*X055068+93*X056057+90.91*X057058+9 2.66*X057070+90.98*X058059+94.71*X058071+93.19*X059060+91.84*X059072+85.05* X060061+87.85*X060073+88.04*X061074+109.7*X065066+96.58*X065080+89.5*X0660 67+91.38*X066081+92.84*X067068+86.87*X067082+87.74*X068069+88.68*X068083+9 2.35*X069070+90.52*X070071+90.13*X070085+91.89*X071072+89.49*X071086+93.72* X072073+90.2*X072087+88.63*X073074+89.78*X073088+88.55*X074089+95.83*X0800 81+91.58*X081082+92.94*X082083+90.82*X083084+93.95*X084085+93.11*X085086+9 4.29*X086087+94.46*X087088+91.63*X088089;

```
S.A.
X001002 + X002004 >= 1;
                                                X020022 >= 1;
X001003 + X001002 >= 1;
                                                X021028 + X021022 >= 1;
X001003 + X003004 + X003007 >= 2:
                                                X022029 >=1:
X002004 + X004005 + X004008 >= 2;
                                                X023031 >=1;
X004008 + X007008 >= 1;
                                                X024032 >=1;
X007008 + X006007 >=1:
                                                X025026 + X025033 + X018025 >=2;
X006009 >=1;
                                                X025026 + X026027 + X026034 >= 2;
X009017 + X009012 >= 1;
                                                X014027 + X027028 + X027035 +
X010011 + X010012 >=1:
                                                X026027 >=2:
X011013 + X012013 >= 1;
                                                X027028 + X021028 + X028289 +
X010012 + X012014 + X012018 >= 2;
                                                X028036 >=2;
X012014 + X014015 + X014027 >= 2:
                                                X028289 + X289037 + X289029 >=2:
                                                X289029 + X029030 + X029038 +
X015286 + X015019 >= 1;
X287286 + X030287 >= 1;
                                                X022029 >=2;
X009017 + X017016 + X017018 +
                                                X029030 + X030039 >=1:
X017024 >=2;
                                                X023031 + X031032 + X031043 >= 2;
X018025 >=1;
                                                X031032 + X024032 + X032033 +
X019021 + X019020 >=1;
                                                X032044 >=2;
```

```
X032033 + X025033 + X033034 >= 2;
                                                X066067 + X054067 + X067068 +
X033034 + X026034 + X034035 +
                                                X067082 >=2;
X034046 >=2:
                                                X067068 + X055068 + X068069 +
X034035 + X027035 + X035036 +
                                                X068083 >= 2;
X035047 >=2;
                                                X068069 + X069070 >=1;
X035036 + X028036 + X036037 +
                                                X069070 + X057070 + X070071 +
X036048 >=2;
                                                X070085 >=2;
X036037 + X289037 + X037038 +
                                                X070071 + X058071 + X071072 +
X037049 >=2:
                                                X071086 >=2:
X037038 + X029038 + X038039 +
                                                X071072 + X059072 + X072073 +
X038050 >=2;
                                                X072087 >=2;
X030039 + X039050 >= 1;
                                                X072073 + X060073 + X073074 +
X042043 + X042053 >= 1;
                                                X073088 >=2;
X042043 + X031043 + X043044 +
                                                X073074 + X061074 >= 1;
X043054 >=2:
                                                X065080 + X080081 >=1:
X043044 + X032044 + X044045 +
                                                X080081 + X066081 + X081082 >= 2;
X044055 >=2;
                                                X081082 + X082083 + X067082 >= 2;
X044045 + X045046 >= 1;
                                                X082083 + X083084 + X068083 >= 2;
X045046 + X034046 + X046047 +
                                                X083084 + X084085 >= 1;
X046057 >=2;
                                                X084085 + X070085 + X085086 >= 2;
X046047 + X035047 + X047048 +
                                                X085086 + X071086 + X086087 >= 2:
                                                X086087 + X072087 + X087088 >= 2;
X047058 >=2;
X047048 + X036048 + X048049 +
                                                X087088 + X073088 + X088089 >= 2;
X048059 >=2;
                                                X088089 + X074089 >= 1;
X048049 + X037049 + X049050 +
                                                X001003 + X003004 >= 1;
X049060 >=2;
                                                X002004 + X004005 >= 1;
X049050 + X038050 + X039050 +
                                                X010012 + X012014 >=1:
X050061 >= 2;
                                                X012014 + X014015 >= 1;
X042053 + X053054 + X053066 >= 2;
                                                X017016 + X017018 + X017024 >=1;
X053054 + X043054 + X054055 +
                                                X025026 + X025033 >= 1;
X054067 >=2;
                                                X025026 + X026027 >= 1;
X054055 + X044055 + X056057 +
                                                X027028 + X027035 + X026027 >= 1;
X055068 >=2:
                                                X021028 + X028289 + X028036 >=1:
X056057 + X056057 >= 1;
                                                X028289 + X289037 >=1;
X056057 + X046057 + X057058 +
                                                X029030 + X029038 + X022029 >=1:
X057070 >=2:
                                                X023031 + X031032 >= 1;
X057058 + X047058 + X058059 +
                                                X024032 + X032033 + X032044 >= 1;
                                                X032033 + X025033 >=1;
X058071 >=2;
X058059 + X048059 + X059060 +
                                                X026034 + X034035 + X034046 >= 1;
                                                X027035 + X035036 + X035047 >= 1:
X059072 >=2:
X059060 + X049060 + X060061 +
                                                X028036 + X036037 + X036048 >= 1;
X060073 >=2:
                                                X289037 + X037038 + X037049 >= 1;
X050061 + X061074 >= 1;
                                                X029038 + X038039 + X038050 >= 1;
X065066 + X065080 >=1;
                                                X031043 + X043044 + X043054 >= 1;
X053066 + X065066 + X066067 +
                                                X032044 + X044045 + X044055 >= 1:
X066081 >=2;
                                                X034046 + X046047 + X046057 >= 1;
```

```
X035047 + X047048 + X047058 >= 1;
                                                 X055068 + X068069 + X068083 >= 1;
X036048 + X048049 + X048059 >= 1;
                                                 X057070 + X070071 + X070085 >= 1;
X037049 + X049050 + X049060 >= 1;
                                                 X058071 + X071072 + X071086 >= 1;
X038050 + X039050 + X050061 >= 1;
                                                 X059072 + X072073 + X072087 >= 1;
X042053 + X053054 >= 1;
                                                 X060073 + X073074 + X073088 >= 1;
X043054 + X054055 + X054067 >= 1;
                                                 X080081 + X066081 >= 1;
X044055 + X056057 + X055068 >= 1;
                                                 X081082 + X082083 >= 1;
X046057 + X057058 + X057070 >= 1;
                                                 X082083 + X083084 >= 1;
X047058 + X058059 + X058071 >= 1;
                                                 X084085 + X070085 >= 1;
X048059 + X059060 + X059072 >= 1;
                                                 X085086 + X071086 >=1;
X049060 + X060061 + X060073 >= 1;
                                                 X086087 + X072087 >= 1;
X065066 + X066067 + X066081 >= 1;
                                                 X087088 + X073088 >=1;
X054067 + X067068 + X067082 >= 1;
```

ANEXO 16. FÓRMULA LINGO MAPA 2

95.83*X080081+112.55*X080098+91.58*X081082+112.46*X081099+92.94*X082083+11 4.7*X082100+90.82*X083084+109.94*X083101+93.95*X084085+93.11*X085086+108.56 *X085103+94.29*X086087+110.1*X086104+94.46*X087088+114.95*X087105+91.63*X0 88089+85.65*X088107+92.95*X089108+57.55*X098099+115.27*X098120+92.29*X0991 00+111.17*X099121+91.96*X100101+104.77*X100122+85.58*X101102+95.52*X101123 +99.2*X102103+91.28*X102124+90.86*X103104+90.94*X103125+91.63*X104105+91.72 *X104126+90.73*X105106+85.08*X105127+23.91*X106107+17.4*X106113+85.08*X107 108+33.02*X108114+80.49*X113114+65.27*X113128+65.41*X114129+31.62*X120121+ 160.48*X120154+90.92*X121122+89.08*X122123+94.1*X122135+85.99*X123124+98.43 *X123136+99.22*X124125+91.73*X125126+101.84*X125138+93.86*X126127+106.13*X 126139+91.42*X127128+112.08*X127140+77.51*X128129+113.51*X128141+114.94*X1 29142+91.92*X135136+28.79*X135154+94.14*X136137+97.33*X136155+95.47*X13713 8+93.41*X138139+107.14*X138157+91.69*X139140+79.21*X139159+90.56*X140141+7 5.11*X140160+85.51*X141142+74.39*X141161+78.37*X142162+93.81*X155156+58.14* X155167+90.94*X156157+94*X157158+165.71*X157191+27.61*X158159+180.55*X1581 92+90.67*X159160+92.1*X160161+81.01*X161162+127.68*X167168+89.01*X168191+1 01.06*X191192:

```
X080081 + X080098 >= 1;
                                                X106113 + X113114 + X113128 >=2;
                                                X113114 + X108114 + X114129 >=2;
X080098 + X081099 >= 1;
X082083 + X082100 >= 1;
                                                X098120 + X120121 + X120154 >= 2;
X083084 + X083101 >= 1;
                                                X120121 + X121122 + X099121 >= 2;
X084085 >=1;
                                                X121122 + X100122 + X122123 +
X085086 + X085103 >= 1;
                                                X122135 >=2;
X086087 + X086104 >= 1;
                                                X122123 + X101123 + X123124 +
X087088 + X087105 >=1:
                                                X123136 >=2:
X088089 + X088107 >= 1;
                                                X123124 + X124125 >=1;
X089108 + X088089 >= 1;
                                                X124125 + X103125 + X125126 +
X080098 + X098099 + X098120 >= 2;
                                                X125138 >=2;
X098099 + X081099 + X099100 +
                                                X125126 + X104126 + X126127 +
X099121 >=2;
                                                X126139 >=2;
X099100 + X082100 + X100101 +
                                                X126127 + X105127 + X127128 +
X100122 >=2;
                                                X127140 >=2;
X100101 + X083101 + X101102 +
                                                X127128 + X113128 + X128129 +
X102124 >= 2;
                                                X128141 >=2;
X101102 + X102103 >= 1;
                                                X128129 + X114129 + X129142 >=2;
X102103 + X085103 + X103104 +
                                                X122135 + X135136 + X135154 >=2:
X103125 >=2;
                                                X135136 + X123136 + X136137 +
X103104 + X086104 + X104105 +
                                                X136155 >=2;
X104126 >=2;
                                                X136137 + X137138 >=1;
                                                X137138 + X125138 + X138139 +
X104105 + X087105 + X105106 +
X105127 >=2;
                                                X138157 >=2;
                                                X138139 + X126139 + X139140 +
X105106 + X106107 + X106113 >=2;
X088107 + X106107 + X107108 >=2;
                                                X139159 >=2;
X107108 + X089108 + X108114 >= 2;
```

```
X139140 + X127140 + X140141 +
                                                X107108 + X089108 >=1;
X140160 >=2;
                                                X106113 + X113114 >=1;
X140141 + X128141 + X141142 +
                                                X113114 + X108114 >=1;
                                                X098120 + X120121 >= 1;
X141161 >=2;
X141142 + X129142 + X142162 >=2;
                                                X120121 + X121122 >=1;
X136155 + X155156 + X155167 >=2;
                                                X100122 + X122123 + X122135 >=1;
X155156 + X156157 >=1;
                                                X101123 + X123124 + X123136 >=1;
X156157 + X138157 + X157158 +
                                                X103125 + X125126 + X125138 >=1;
X157191 >=2;
                                                X104126 + X126127 + X126139 >= 1;
X157158 + X158159 + X158192 >=2;
                                                X105127 + X127128 + X127140 >= 1;
X158159 + X139159 + X159160 >=2;
                                                X113128 + X128129 + X128141 >=1;
X159160 + X140160 + X160161 >=2;
                                                X128129 + X114129 >=1;
X160161 + X141161 + X161162 >=2;
                                                X122135 + X135136 >=1;
X161162 + X142162 >=1;
                                                X123136 + X136137 + X136155 >=1;
X155167 + X167168 >=1;
                                                X125138 + X138139 + X138157 >=1;
X167168 + X168191 >=1;
                                                X126139 + X139140 + X139159 >= 1;
X157191 + X168191 + X191192 >=2;
                                                X127140 + X140141 + X140160 >=1;
                                                X128141 + X141142 + X141161 >=1;
X191192 + X158192 >=1;
X080098 + X098099 >= 1;
                                                X141142 + X129142 >=1;
X081099 + X099100 + X099121 >=1;
                                                X136155 + X155156 >=1;
X082100 + X100101 + X100122 >= 1;
                                                X138157 + X157158 + X157191 >=1;
X083101 + X101102 + X102124 >= 1;
                                                X157158 + X158159 >=1;
X085103 + X103104 + X103125 >= 1;
                                                X158159 + X139159 >=1;
X086104 + X104105 + X104126 >= 1;
                                                X159160 + X140160 >=1;
X087105 + X105106 + X105127 >= 1;
                                                X160161 + X141161 >=1;
X105106 + X106107 >=1;
                                                X157191 + X168191 >=1;
X088107 + X106107 >=1;
```

ANEXO 17. FÓRMULA LINGO MAPA 3

25.08*X039040+119.86*X039050+375.5*X040041+175.43*X040062+60.83*X041052+92. 55*X050061+226.89*X052051+47.2*X052064+112.7*X061062+88.06*X061074+140.32* X062290+89.19*X290075+174.89*X290063+70.95*X063064+153.09*X063076+159.27*X 064078+255.94*X074075+89.9*X074089+62.06*X075076+34.8*X076077+198.99*X0770 78+43.57*X077091+125.44*X078079+79.32*X078096+77.92*X079097+162.3*X089090+ 89.38*X089108+111.91*X090091+185.07*X090108+47.67*X090092+94.76*X091093+10 1.31*X092093+59.37*X092109+115.26*X093094+57.44*X093110+79.65*X094291+39.32 *X094095+75.24*X095096+126.19*X096097+63.08*X097112+31.09*X096291+48.99*X2 91111+61.61*X097112+33.02*X108114+173.84*X108109+100.38*X109110+31.09*X109 115+228.64*X110111+36.41*X110116+124.65*X111112+43.39*X111112+61.73*X11211 9+65.41*X114129+182.23*X114115+100.6*X115116+54.64*X115130+102.29*X116117+ 51.83*X116131+131.94*X117118+46.61*X117132+115.05*X118119+45.74*X118133+13 7.24*X119153+192.87*X129130+114.94*X129142+99.21*X130131+78.98*X130144+99.7 *X131132+98.87*X131150+100.2*X132151+98.61*X133152+78.37*X142162+19.36*X14 3144+38.23*X143146+18.82*X144145+18.59*X145149+18.53*X146147+17.95*X147148 +77.46*X147163+19.57*X148149+80.06*X149150+100.29*X150151+95.49*X150164+12 5.18*X151177+95.11*X151165+51.82*X177152+194.09*X177178+55.47*X152153+137.1 5*X153166+29.24*X162173+196*X162163+96.37*X163164+50.61*X163174+99.06*X164 165+64.03*X164175+78.05*X165176+74.34*X166180+196.58*X173174+96.1*X174175+ 100.85*X175176+150.37*X175181+112.36*X176178+145.61*X176182+43.7*X178179+1 39.26*X178183+80.36*X179180+135.96*X179184+143.48*X180185+96.43*X181182+13 8.59*X181186+103.52*X182183+134.84*X182187+50.27*X183184+131.38*X183188+13 5.3*X184185+136.13*X184189+165.78*X185190+94.13*X186187+91.38*X187188+57.11 *X188189+207.34*X189190;

```
X039040 + X039050 >=1:
                                                 X089090 + X090091 + X090108 +
X039040 + X040041 + X040062 >= 2;
                                                 X090092 >= 2;
X040041 + X041052 >= 1;
                                                 X091093 >=1;
X039050 + X050061 >=1;
                                                 X090092 + X092093 + X092109 >= 2;
X041052 + X052051 + X052064 >= 2;
                                                 X092093 + X091093 + X093094 +
X050061 + X061062 + X061074 >= 2;
                                                 X093110 >=2;
X061062 + X040062 + X062290 >= 2;
                                                 X093094 + X094095 + X094291 >= 2:
X062290 + X290063 + X290075 >=2;
                                                 X096291 + X094291 + X291111 >= 2;
X290063 + X063064 + X063076 >= 2;
                                                 X094095 + X095096 >=1;
X061074 + X074075 + X074089 >= 2;
                                                 X095096 + X078096 + X096291 +
X074075 + X290075 + X075076 >= 2;
                                                 X096097 >=2;
X075076 + X063076 + X076077 >= 2:
                                                 X079097 + X097112 + X096097 >= 2;
X052064 + X063064 + X064078 >= 2;
                                                 X089108 + X090108 + X10811<sup>4</sup> ·
X076077 + X077078 + X077091 >= 2;
                                                 X108109 >=2;
X077078 + X064078 + X078079 +
                                                 X108109 + X092109 + X109110 +
X078096 >=2;
                                                 X109115 >=2:
X078079 + X079097 >= 1;
                                                 X109110 + X093110 + X110111 +
X074089 + X089090 + X089108 >= 2;
                                                 X110116 >=2;
```

```
X110111 + X291111 + X111112 +
                                                X176178 + X177178 + X178179 +
X111118 >=2;
                                                X178183 >=2;
X111112 + X097112 + X112119 >=2;
                                                X178179 + X179180 + X179184 >= 2;
X108114 + X114115 + X114129 >= 2;
                                                X179180 + X166180 + X180185 >=2;
X114115 + X109115 + X115116 +
                                                X175181 + X181182 + X181186 >=2;
X115130 >=2;
                                                X181182 + X176182 + X182183 +
X115116 + X110116 + X116117 +
                                                X182187 >=2;
X116131 >=2;
                                                X182183 + X178183 + X183184 +
X116117 + X117118 + X117132 >=2;
                                                X183188 >=2:
                                                X183184 + X179184 + X184185 +
X117118 + X111118 + X118119 +
X118133 >=2;
                                                X184189 >=2;
X118119 + X112119 + X119153 >=2;
                                                X184185 + X180185 + X185190 >= 2;
                                                X181186 + X186187 >=1;
X114129 + X129130 + X129142 >=2;
X129130 + X115130 + X130131 +
                                                X186187 + X182187 + X187188 >= 2;
                                                X187188 + X183188 + X188189 >=2:
X130144 >=2:
X130131 + X116131 + X131132 +
                                                X188189 + X184189 + X189190 >=2;
                                                X189190 + X185190 >=1;
X131150 >=2;
                                                X039040 + X040041 >= 1;
X131132 + X117132 + X132151 >=2;
X118133 + X133152 >=1;
                                                X041052 + X052051 >= 1;
X129142 + X142162 >=1;
                                                X050061 + X061062 >= 1;
X143144 + X143146 >=1:
                                                X061062 + X040062 >= 1;
X130144 + X143144 + X144145 >= 2;
                                                X062290 + X290063 >=1;
X144145 + X145149 >=1;
                                                X290063 + X063064 >= 1;
X143146 + X146147 >= 1;
                                                X061074 + X074075 >= 1;
X146147 + X147148 + X147163 >= 2;
                                                X074075 + X290075 >= 1;
X145149 + X148149 + X149150 >= 2;
                                                X075076 + X063076 >= 1;
X149150 + X131150 + X150151 +
                                                X052064 + X063064 >= 1;
X150164 >=2;
                                                X076077 + X077078 >= 1;
X150151 + X132151 + X151177 +
                                                X064078 + X078079 + X078096 >= 1;
X151165 >=2;
                                                X074089 + X089090 >= 1;
X151177 + X177152 + X177178 >=2;
                                                X090091 + X090108 + X090092 >= 1;
X177152 + X133152 + X153166 +
                                                X090092 + X092093 >= 1;
X152153 >=2:
                                                X091093 + X093094 + X093110 >= 1;
X142162 + X162163 + X162173 >=2;
                                                X093094 + X094095 >=1:
X162163 + X147163 + X163164 +
                                                X096291 + X094291 >= 1;
X163174 >=2:
                                                X078096 + X096291 + X09609
X163164 + X150164 + X164165 +
                                                X079097 + X097112 >= 1;
X164175 >=2;
                                                X090108 + X108114 + X108109 >= 1;
X164165 + X151165 + X165176 >= 2;
                                                X092109 + X109110 + X109115 >= 1;
X153166 + X166180 >=1;
                                                X093110 + X110111 + X110116 >=1;
X162173 + X173174 >=1;
                                                X291111 + X1111112 + X1111118 >=1;
X173174 + X163174 + X174175 >= 2;
                                                X111112 + X097112 >=1;
X174175 + X164175 + X175176 +
                                                X108114 + X114115 >=1;
X175181 >=2;
                                                X109115 + X115116 + X115130 >=1;
X175176 + X165176 + X176178 +
                                                X110116 + X116117 + X116131 >=1;
X176182 >=2;
                                                X116117 + X117118 >=1;
```

```
X111118 + X118119 + X118133 >=1;
                                               X164165 + X151165 >=1;
X118119 + X112119 >=1;
                                               X173174 + X163174 >=1;
X114129 + X129130 >=1;
                                               X164175 + X175176 + X175181 >=1;
X115130 + X130131 + X130144 >=1;
                                               X165176 + X176178 + X176182 >=1;
X116131 + X131132 + X131150 >=1;
                                               X177178 + X178179 + X178183 >=1;
X131132 + X117132 >=1;
                                               X178179 + X179180 >=1;
X130144 + X143144 >=1;
                                               X179180 + X166180 >=1;
X146147 + X147148 >=1;
                                               X175181 + X181182 >=1;
X145149 + X148149 >=1;
                                               X176182 + X182183 + X182187 >= 1;
X131150 + X150151 + X150164 >=1;
                                               X178183 + X183184 + X183188 >=1;
X132151 + X151177 + X151165 >=1;
                                               X179184 + X184185 + X184189 >=1;
X151177 + X177152 >=1;
                                               X184185 + X180185 >=1;
X133152 + X153166 + X152153 >=1;
                                               X186187 + X182187 >=1;
X142162 + X162163 >=1;
                                               X187188 + X183188 >=1;
X147163 + X163164 + X163174 >=1;
                                               X188189 + X184189 >=1;
X150164 + X164165 + X164175 >=1;
```

ANEXO 18. FÓRMULA LINGO MAPA 4

80.9*X193194+109.23*X193197+97.11*X194195+79.49*X194198+110.96*X195196+43.3 5*X195199+97.8*X196203+180.71*X196204+90.62*X197200+74*X197198+94.5*X19819 9+89.86*X198201+102.17*X199196+89*X199202+132.49*X199203+161.8*X204210+101 .72*X200205+74.13*X200201+96.39*X201202+102.84*X201206+97.22*X202203+97.93* X202207+149.3*X203204+93.05*X203208+102.15*X203209+158.72*X204210+96.8*X20 5211+74.4*X205206+92.08*X206207+95.28*X206212+100.97*X207208+92.38*X207213 +36.13*X208209+87.91*X208214+123.82*X209216+95.26*X209215+101.5*X216210+70. 24*X216217+64.42*X210218+71.92*X211212+78.97*X211219+94.47*X212213+82.07*X 212220+102.06*X213214+81.47*X213221+71.4*X214215+82.55*X214222+66.35*X2152 17+71.29*X215223+149.46*X217218+75.38*X217223+89.71*X218225+97.3*X218226+7 0.92*X219220+131.94*X219230+91.68*X220221+132.83*X220231+99.84*X221222+131. 51*X221232+116.15*X222224+129.35*X222233+25.99*X223224+185.47*X224225+60.6 5*X224227+48.85*X225226+52.7*X225228+59.81*X226229+159.33*X227228+82.94*X2 27234+75.26*X228229+69.29*X228292+73.58*X229235+80*X229236+72.68*X230231+9 2.69*X231232+99.72*X232233+179.23*X233234+118.3*X234292+54.8*X292235+62.92* X235236;

```
X193194 + X193197 >=1:
                                               X208209 + X203209 + X209216 +
X193194 + X194195 + X194198 >=2;
                                               X209215 >=2;
X194195 + X195196 + X195199 >=2;
                                               X209216 + X216210 + X216217 >=2;
X193197 + X197200 + X197198 >=2;
                                               X216210 + X204210 + X210218 >= 2;
X197198 + X194198 + X198199 +
                                               X205211 + X211212 + X211219 >=2;
X198201 >=2;
                                               X211212 + X206212 + X212213 +
X198199 + X195199 + X199196 +
                                               X212220 >=2:
X199202 + X199203 >=2;
                                               X212213 + X207213 + X213214 +
X199196 + X195196 + X196203 +
                                               X213221 >=2;
X196204 >=2:
                                               X213214 + X208214 + X214215 +
X197200 + X200201 + X200205 >= 2;
                                               X214222 >=2;
X200201 + X198201 + X201202 +
                                               X214215 + X209215 + X215217 +
X201206 >=2:
                                               X215223 >=2:
X201202 + X199202 + X202203 +
                                               X215217 + X216217 + X217218 +
X202207 >=2;
                                               X217223 >=2;
X202203 + X199203 + X196203 +
                                               X217218 + X210218 + X218225 +
X203204 + X203208 + X203209 >= 2;
                                               X218226 >=2;
X203204 + X196204 + X204210 >= 2;
                                               X211219 + X219220 + X21923
X200205 + X205211 + X205206 >= 2:
                                               X219220 + X212220 + X220221 +
X205206 + X201206 + X206207 +
                                               X220231 >=2;
X206212 >=2;
                                               X220221 + X213221 + X221222 +
X206207 + X202207 + X207208 +
                                               X221232 >=2:
X207213 >=2:
                                               X221222 + X214222 + X222224 +
X202207 + X203208 + X208209 +
                                               X222233 >=2;
X208214 >=2;
```

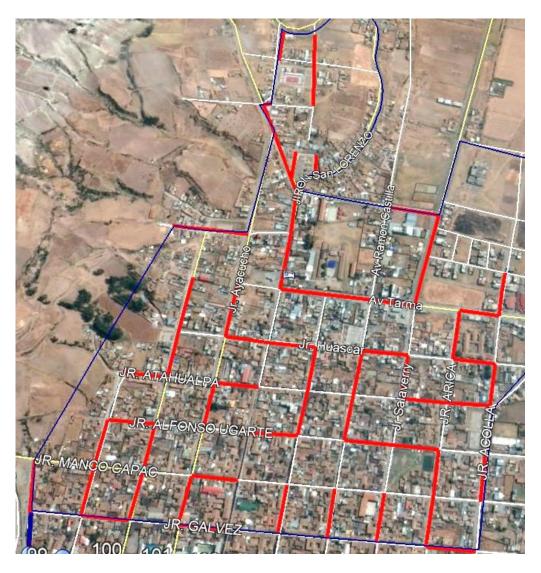
```
X222224 + X223224 + X224225 +
                                                X200205 + X205211 >=1;
X224227 >=2;
                                                X201206 + X206207 + X206212 >= 1;
X224225 + X218225 + X225226 +
                                                X202207 + X207208 + X207213 >= 1;
X225228 >=2;
                                                X203208 + X208209 + X208214 >= 1;
X225226 + X218226 + X226229 >=2;
                                                X203209 + X209216 + X209215 >= 1;
X224227 + X227228 + X227234 >= 2;
                                                X209216 + X216210 >=1;
X227228 + X225228 + X228229 +
                                                X216210 + X204210 >= 1;
X228292 >=2;
                                                X205211 + X211212 >=1;
                                                X206212 + X212213 + X212220 >=1;
X228229 + X226229 + X229235 +
X229236 >=2;
                                                X207213 + X213214 + X213221 >=1;
X219230 + X230231 >= 1;
                                                X208214 + X214215 + X214222 >=1;
X230231 + X220231 + X231232 >= 2;
                                                X209215 + X215217 + X215223 >=1;
X231232 + X221232 + X232233 >=2;
                                                X216217 + X217218 + X217223 >=1;
X232233 + X222233 + X233234 >= 2;
                                                X210218 + X218225 + X218226 >= 1;
X233234 + X227234 + X234292 >=2:
                                                X211219 + X219220 >=1:
X234292 + X228292 + X292235 >=2;
                                                X212220 + X220221 + X220231 >= 1;
X292235 + X229235 + X235236 >=2;
                                                X213221 + X221222 + X221232 >=1;
X235236 + X229236 >= 1;
                                                X214222 + X222224 + X222233 >=1;
X193194 + X194195 >=1;
                                                X223224 + X224225 + X224227 >=1;
X194195 + X195196 >=1;
                                                X218225 + X225226 + X225228 >=1;
X193197 + X197200 >=1;
                                                X225226 + X218226 >=1:
X194198 + X198199 + X198201 >=1;
                                                X224227 + X227228 >=1;
X195199 + X199196 + X199202 +
                                                X225228 + X228229 + X228292 >=1;
                                                X226229 + X229235 + X229236 >= 1;
X199203 >=1;
X195196 + X196203 + X196204 >=1;
                                                X230231 + X220231 >=1;
X197200 + X200201 >=1;
                                                X231232 + X221232 >=1;
X198201 + X201202 + X201206 >=1:
                                                X232233 + X222233 >=1:
X199202 + X202203 + X202207 >=1;
                                                X233234 + X227234 >= 1;
X199203 + X196203 + X203204 +
                                                X234292 + X228292 >=1;
X203208 + X203209 >= 1;
                                                X292235 + X229235 >= 1;
X203204 + X196204 >=1;
```

ANEXO 19. FÓRMULA LINGO MAPA 5

 $83.66* \times 237238 + 204.32* \times 237242 + 188.91* \times 238240 + 562.85* \times 239277 + 208.9* \times 240241 + 6\\ 0.9* \times 240243 + 84.63* \times 242243 + 271.02* \times 243244 + 285.31* \times 244245 + 175.05* \times 245246 + 184.\\ 49* \times 245248 + 84.94* \times 246247 + 104.78* \times 246248 + 204.76* \times 247279 + 99* \times 248249 + 132.15* \times 249250 + 102.36* \times 250282 + 120* \times 279282 + 82.98* \times 277247 + 156.98* \times 277274 + 69.25* \times 274275 + 90.15* \times 274276 + 205.25* \times 274273 + 232.51* \times 273278 + 451.53* \times 278179 + 43.47* \times 278280 + 255.04* \times 280281 + 447.18* \times 280282 + 488.85* \times 281285 + 129.49* \times 282283 + 49.69* \times 283284 + 212.25* \times 284285;$

```
S.A:
                                                X274276 >=1;
                                                X277274 + X274273 >=1;
X237238 + X237242 >=1;
X237238 + X238240 >=1;
                                                X274273 + X273278 >= 1;
                                                X273278 + X278179 + X278280 >= 2;
X239277 >=1;
X237242 + X242243 >= 1;
                                                X278280 + X280281 + X280282 >= 2;
X238240 + X240241 + X240243 >=2;
                                                X280281 + X281285 >=1;
X240241 >=1:
                                                X281285 + X284285 >=1;
X242243 + X240243 + X243244 >= 2;
                                                X283284 + X284285 >=1;
X243244 + X244245 >=1;
                                                X282283 + X283284 >=1;
X244245 + X245246 + X245248 >= 2;
                                                X250282 + X282283 >=1:
X245246 + X246247 + X246248 >=2;
                                                X238240 + X240241 >=1;
X246247 + X247279 >=1;
                                                X242243 + X240243 >= 1;
X245248 + X246248 + X248249 >=2;
                                                X244245 + X245246 >= 1;
X248249 + X249250 >=1;
                                                X245246 + X246247 >= 1;
X249250 + X250282 >= 1;
                                                X245248 + X246248 >= 1;
X279282 + X247279 + X278179 >=2;
                                                X279282 + X247279 >= 1;
X277247 + X277274 >=1;
                                                X273278 + X278179 >=1;
X274275 >=1;
                                                X278280 + X280281 >=1;
```

ANEXO 20. FÓRMULA LINGO MAPA 6


202.5*X236251+110.2*X236253+91.03*X251252+89.3*X251254+89.07*X252256+49.68*X252255+101.81*X253254+172.12*X253271+119.17*X256257+42.24*X256258+43.57*X257259+81.53*X255293+105.21*X255260+43.97*X293258+101.85*X293261+115.58*X258259+42.02*X258262+39.15*X259264+59.75*X262265+71.27*X262263+60.81*X263266+45.57*X263264+103.84*X264270+39.27*X260261+41.52*X260267+40.93*X261265+80*X265266+40.65*X265268+40.9*X266269+46.52*X267271+77.15*X267268+60.1*X268272+87.97*X268269+41.74*X269270+76.11*X270273+74.55*X271272+129.45*X272273;

```
X236251 + X236253 >=1;
                                                X269270 + X264270 + X270273 >= 2;
X236251 + X251252 + X251254 >= 2;
                                                X267271 + X271272 >= 1;
X251252 + X252256 + X252255 >=2;
                                                X271272 + X268272 + X272273 >= 2;
X236253 + X253254 + X253271 >= 2;
                                                X272273 + X270273 >=1;
X253254 + X251254 >= 1;
                                                X236251 + X251252 >=1;
                                                X251252 + X252256 >=1;
X252256 + X256257 + X256258 >=2;
X256257 + X257259 >= 1;
                                                X236253 + X253254 >= 1;
X252255 + X255293 + X255260 >=2;
                                                X252256 + X256257 >=1;
                                                X252255 + X255293 >=1;
X255293 + X293258 + X293261 >=2;
X293258 + X256258 + X258259 +
                                                X255293 + X293258 >=1:
X258262 >=2;
                                                X256258 + X258259 + X258262 >= 1;
X258259 + X257259 + X259264 >=2;
                                                X258259 + X257259 >=1;
X255260 + X260261 + X260267 >=2;
                                                X255260 + X260261 >=1;
X260261 + X293261 + X261265 >= 2;
                                                X260261 + X293261 >= 1;
X258262 + X262265 + X262263 >=2;
                                                X258262 + X262265 >=1;
X262263 + X263266 + X263264 >= 2;
                                                X262263 + X263266 >=1;
X263264 + X259264 + X264270 >= 2;
                                                X263264 + X259264 >=1;
X261265 + X262265 + X265266 +
                                                X262265 + X265266 + X265268 >=1;
X265268 >=2:
                                                X265266 + X263266 >=1:
X265266 + X263266 + X266269 >=2;
                                                X260267 + X267271 >= 1;
X260267 + X267271 + X267268 >=2;
                                                X265268 + X268272 + X268269 >= 1;
X267268+ X265268 + X268272 +
                                                X268269 + X266269 >=1:
X268269 >=2;
                                                X269270 + X264270 >= 1;
X268269 + X266269 + X269270 >= 2;
                                                X271272 + X268272 >=1;
```

ANEXO 21. CONJUNTO SOLUCIÓN LINGO

	X001003	X002004	X004008	X006007	X006009	X009012	X010012
	X011013	X014015	X015019	X018025	X019021	X020022	X021028
	X022029	X023031	X024032	X025026	X026027	X027028	X289029
⊣	X289037	X030039	X030287	X031043	X032033	X033034	X034046
RUTA	X035036	X035047	X036048	X037038	X038050	X042043	X044045
R	X044055	X046057	X047058	X048049	X049050	X053054	X053066
	X054067	X056057	X058059	X059060	X060073	X061074	X065080
	X066081	X067082	X068069	X068083	X070085	X071086	X072087
	X073088	X081082	X083084	X088089	X012018	X017016	
	X080098	X082100	X083101	X084085	X085103	X086104	X087105
	X088089	X098099	X099100	X101102	X103125	X104126	X105127
RUTA 2	X106107	X106113	X107108	X108114	X114129	X120121	X122123
RUJ	X122135	X123124	X125126	X127128	X128129	X135154	X136137
	X136155	X138139	X138157	X139140	X140160	X141142	X141161
	X142162	X155167	X156157	X158159	X160161	X168191	X191192
	X039040	X041052	X050061	X052064	X061062	X061074	X062290
	X290075	X063064	X074089	X075076	X076077	X078096	X079097
	X089108	X090092	X091093	X093110	X094095	X097112	X096291
3	X108114	X109115	X110116	X112119	X114129	X115130	X116117
RUTA	X117132	X130131	X131150	X133152	X142162	X143144	X144145
~	X145149	X146147	X147148	X150151	X151165	X177152	X162173
	X163174	X164175	X165176	X166180	X176178	X178179	X179180
	X181182	X182183	X183184	X184185	X185190	X186187	X187188
	X188189	X111118					
	X193194	X194195	X195199	X196204	X197200	X197198	X198201
-	X199196	X200205	X201202	X202207	X203204	X203209	X205206
RUTA 4	X206207	X208209	X216210	X216217	X210218	X211212	X211219
RU.	X212220	X213221	X214215	X214222	X215217	X219220	X222233
	X223224	X224227	X225226	X225228	X226229	X227234	X228229
	X230231	X231232	X232233	X234292	X292235	X235236	
2	X237238	X239277	X240241	X240243	X242243	X244245	X245246
RUTA	X245248	X246247	X246248	X248249	X250282	X279282	X277247
RL	X274275	X274276	X273278	X278280	X280281	X283284	X284285
	X236253	X251252	X251254	X252256	X253254	X256258	X257259
.A 6	X255293	X258262	X259264	X262265	X263266	X263264	X260261
RUTA	1123233	7.20202	,,	,,	,,	7.20020 F	,,
	X260267	X261265	X266269	X267271	X268272	X269270	X270273

ANEXO 22. ARCOS SUGERIDOS MAPA 1

ANEXO 23. ARCOS SUGERIDOS MAPA 2

ANEXO 24. ARCOS SUGERIDOS MAPA 3

ANEXO 25. ARCOS SUGERIDOS MAPA 4

ANEXO 26. ARCOS SUGERIDOS MAPA 5

ANEXO 27. ARCOS SUGERIDOS MAPA 6

ANEXO 28. GUÍA DE REVISIÓN DOCUMENTARIA

DOCUMENTOS	اXEغ	STE?	¿SE ACT	UALIZA?	OBSERVACIONES
DOCOIVIEN 103	SÍ	NO	SÍ	NO	OBSERVACIONES
PLANO DEL DISTRITO DE JAUJA					
PLANO DE SECTORIZACIÓN DEL DISTRITO DE					
JAUJA					
PLANO DE RUTAS DEL RECOJO DE RESIDUOS					
SÓLIDOS					
PLAN OPERATIVO INSTITUCIONAL (POI)					
PLAN INTEGRAL DE GESTIÓN AMBIENTAL DE					
RESIDUOS SÓLIDOS (PIGARS)					
PLAN DE MANTENIMIENTO DE LOS VEHÍCULOS					
RECOLECTORES					
RELACIÓN DEL PERSONAL OBRERO					

FUENTE: Elaboración propia.

ANEXO 29. GUÍA DE OBSERVACIÓN

ACTIVIDADES	CUMPLIMIENTO			OBSERVACIONES
	BUENO	REGULAR	MALO	ODSERVACIONES
SE CUMPLE CON LOS HORARIOS DE				
RECOLECCIÓN				
LA RECOLECCIÓN DE LOS VEHÍCULOS				
COMPACTADORES SIGUE UNA RUTA				
ESTABLECIDA				
LOS VEHÍCULOS COMPACTADORES RECIBEN				
MANTENIMIENTO PREVENTIVO				
LOS VEHÍCULOS COMPACTADORES RECIBEN				
MANTENIMIENTO CORRECTIVO				
SE RECORRE CALLES MÁS DE UNA VEZ				
LOS TRABAJADORES CUENTAN CON EQUIPOS				
DE PROTECCIÓN PERSONAL				
SE UTILIZA LA CAPACIDAD TOTAL DE LOS				
VEHÍCULOS COMPACTADORES				

FUENTE: Elaboración propia.

ANEXO 30. REGISTRO DE DATOS DE HORARIOS DE LOS VEHÍCULOS

VEHÍCULO	DISTRIBUCIÓN			RELLENO		REPASO
	SALIDA	INICIO	TERMINO	INGRESO	SALIDA	DISTRITO

FUENTE: "Optimización de rutas en una empresa de recojo de residuos sólidos en el distrito de Los Olivos" (José Taquia, 2013).