

I FORO INTERNACIONAL DE NANOTECNOLOGÍA

Miércoles 07 de diciembre de 2016 Auditorio de la Universidad Continental

SÍNTESIS Y CARACTERIZACIÓN DE NANORODS DE ORO CON POTENCIALES APLICACIONES EN TERAPIA FOTOTÉRMICA

Dr. Luis M. Angelats Silva Universidad Nacional de Trujillo

INTRODUCCIÓN

APLICACIÓN DE LA NANOTECNOLOGÍA EN LA SALUD:

NANO-MEDICINA: desarrollo de sistemas/Nanopartículas para el diagnóstico, tratamiento y prevención de enfermedades.

REALIDAD PROBLEMÁTICA: INCIDENCIA DEL CÁNCER EN EL MUNDO

2012: 8,2 millones de defunciones atribuidas al cáncer (GLOBOCAN PROJECT 2012)!!

Tipos de cáncer más frecuentes en el Perú - VARONES (GLOBOCAN PROJECT 2012)

Diario el Correo - 20 de Octubre del 2015

Tipos de cáncer más frecuentes en el Perú - MUJERES

Dr Gustavo Sarria - INEN - Perú

TRATAMIENTOS CONVENCIONALES:

CIRUGÍA, RADIOTERAPIA Y QUIMIOTERAPIA \Rightarrow EFECTOS SECUNDARIOS NO DESEADOS

Cirugía

Radioterapia

 La radioterapia destruye las células cancerosas que se están dividiendo, pero también afecta las células en división de los tejidos normales.

Quimioterapia

- Generalmente los medicamentos no diferencian las células normales de las células del cáncer.
- Descenso de los glóbulos rojos en la médula ósea

Alternativa que promete:

Nanopartículas de oro para el diagnóstico y tratamiento del cáncer: "Teragnosis"

ESTUDIOS DE FUNCIONALIDAD DE LOS NANORODS DE ORO

26/01/2017

Fundamento físico: Resonancia de Plasmón Superficial - RSP "Oscilación colectiva de los electrones de conducción"

Teoría de Gans: λ_{max} vs. razón de aspecto (R.A)

J. T. Lin, Biomedical Optics & Medical Imaging

Condiciones fisiológicas favorables para la incorporación de nanopartículas en los tejidos:

Transporte basado en el efecto de permeación y retención aumentada en un
proceso inflamatorio(Enhanced Permeation and Retention, EPR)

S. Wilhelm y col; Nature Review, 2016.

"Los nanosistemas SED atraviesan fácilmente el endotelio de los vasos sanguíneos que irrigan el tumor debido a la existencia de grandes espacios en los mismos y retenidos por la pobre irrigación linfática".

POTENCIAL APLICACIÓN: TERAPIA FOTOTÉRMICA, Modelo: CÁNCER DE MAMA

26/01/2017

Colaboradores LABINM; Analistas: Lic. Henry León León y Heraldo De la Cruz B.

1. Obtención y validación del precursor "hecho en casa": Ácido Cloroáurico

Crecimiento de nanorods de oro con banda de plasmón en NIR:

Variando la concentración de nitrato de plata (AgNO₃):

Imágenes por STEM: (a) 134 μM, (b) 170 μM y (c) 206 μM

L. Angelats S. y col, MRS Advance, 2016.

26/01/2017

Valores de Z-potencial (NICOMP NANO Z 3000):

Nitrato de plata (µM)	Z potencial (mV)	Razón de aspecto (L/D)	
134	+20.44	5.2	
170	+32.53	6.0	
206	+26.74	5.4	

26/01/2017

Efecto de la razón molar BDAC/CTAB:

CTAB/BDAC (5 mL)	HAuCl ₄ .3H ₂ O 0.0010M	AgNO ₃ – 0.004M	AA - 0.0788 M	Semillas de oro
(a) 0.04 (b) 0.11 (c) 0.18 (d) 0.29 (e) 0.36 (f) 0.75	5 mL	450 μL	100 µL	36 μL
10 min		17 h		18 h t

Efecto del volumen de ácido ascórbico (AA); BDAC/CTAB – 0.75:

26/01/2017

EVALUACIÓN DE RETENCIÓN EN SANGRE ("Blood clearance")

- 1. NRdsAu-BDAC/CTAB en buffer 7.4
- 2. Funcionalizadas con mPEG-SH (NRdsAu-mPEG-SH) en buffer

[Modelo: Ratas albino Holtzman]

Espectrómetro: ICP-OES (Inductively Coupled Plasma, Óptico)

Standares de Au: 0.01 ppm - 10 ppm

EVALUACIÓN FOTOTÉRMICA DE NANORODS DE ORO USANDO RADIACIÓN LÁSER λ = 1064 nm (NIR), - 500 mW

EQUIPAMIENTO UTILIZADO - LABINM (Universidad Privada Antenor Orrego - UPAO) – ÁREA DE NANOTECNOLOGÍA-

ESPECTROFOTÓMETRO – Analytik-Jena, SPECORD PLUS 250 190 – 1100 nm

OR ADVANCE W

MICROSCOPIO ELECTRÓNICO DE BARRIDO – TESCAN VEGA 3 LMU – EDS-STEM

Analizador de nanopartículas-Z-POTENCIAL NICOMP NANO Z 3000

DIFRACTÓMETRO DE RAYOS X (DRX Bruker – ECO Advance

CONCLUSIÓN:

Es posible obtener satisfactoriamente nanorods de oro por ruta química con banda de plasmón longitudinal en el NIR, lo que hace posible su aplicación en terapia del cáncer mediante fototermia empleando láser IR.

AGRADECIMIENTO

SUBVENCIÓN:

S/. 323,041.06

UNT

UNIVERSIDAD NACIONAL DE TRUJILLO

GRACIAS!!

