

SÍLABO Matemática Discreta

Código	ASUC00562	2	Carácter	Obligatorio
Prerrequisito	20 créditos aprobados			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2022			

I. Introducción

Matemática Discreta es una asignatura obligatoria, ubicada en el segundo periodo académico de las carreras profesionales de la Facultad de Ingeniería; es prerrequisito de la asignatura de Fundamentos de Programación. Con esta asignatura se desarrolla en un nivel inicial la competencia de Conocimientos de Ingeniería. La relevancia de la asignatura reside en brindar los conceptos clave para que el estudiante emplee estructuras discretas en la solución de problemas.

Los contenidos generales que la asignatura desarrolla son: Fundamentos de lógica proposicional y lógica cuantificacional. Teoría de conjuntos. Inducción matemática. Principios fundamentales de conteo. Teoría de grafos. Árboles. Máquinas de estados finitos.

II. Resultado de aprendizaje

Al finalizar la asignatura, el estudiante será capaz de aplicar estructuras discretas elementales para el planteamiento y solución de problemas de ingeniería.

III. Organización de aprendizajes

	Unidad I Lógica y teoría de conjuntos	Duración en horas	24
Resultado de aprendizaje	Al finalizar la unidad, el estudiante será capaz de básicas de la lógica proposicional y la teoría demostrar si un razonamiento es válido o no.	•	
Ejes temáticos	 Proposiciones Formulación de inferencias Leyes lógicas Deducción general Uso de cuantificadores Intercambio de cuantificadores Silogismo categórico Clases de conjuntos. El conjunto potencia Operaciones con conjuntos El conjunto especial sigma 		

Relaci	Duración en horas	24	
Resultado de aprendizaje	ones de recurrencia y análisis combinatorio Al finalizar la unidad, el estudiante será capaz d básicas de la lógica y la teoría de conjuntos adecuadamente el análisis combinatorio a través ejercicios.	s, para des	sarrollar
Ejes temáticos	 Principio de inducción matemática Demostraciones de proposiciones matemáticas n inducción matemática Definiciones recursivas Relaciones de recurrencia de primer orden Relaciones de recurrencia de segundo orden. Resolución de relaciones de recurrencia Primer y segundo principio de conteo Permutaciones. Combinaciones. 	nediante la	

	Duración en horas	24		
Resultado de aprendizaje	Al finalizar la unidad, el estudiante será capaz de interpretar las estructuras de grafos y presenta técnicas de optimización, utilizando los fundamentos de la teoría de grafos.			
Ejes temáticos	 Teoría de grafos y árboles: Definiciones de grafos Subgrafos, complemento de un grafo Grado de un vértice, grafos planos, caminos y c Definiciones, propiedades Árboles Definiciones de árboles Árboles con raíz Árboles y ordenaciones Árboles ponderados Algoritmo del camino más corto de Dijkstra Árboles recubridores minimales Redes de transportes 	iclos Hamilto	onianos.	

M	Unidad IV áquinas de estado finito	Duración en horas	24
Resultado de aprendizaje	Al finalizar la unidad, el estudiante se de las máquinas y autómatas de esto	•	pretar el trabajo
Ejes temáticos	 Aspectos genéricos de la teoría de Introducción a las máquinas de est Clasificación de las máquinas de e Diagrama de estados Circuitos secuenciales y máquinas El proceso de minimización Lenguajes y gramáticas Autómatas de estado finito no dete 	rados stados de estado finito	

IV. Metodología

El docente se apoyará en el recurso didáctico del aula virtual mediante el uso de las TIC, la investigación bibliográfica para la profundización de los temas tratados.

Modalidad presencial:

- Aprendizaje basado en el servicio
- Aprendizaje basado en problemas (ABP)
- Estudio de casos
- Talleres
- Aprendizaje cooperativo

Modalidad semipresencial

- Aprendizaje basado en el servicio
- Aprendizaje basado en problemas (ABP)
- Estudio de casos
- Simulaciones
- Talleres
- Aprendizaje cooperativo
- Aula invertida

Modalidad Educación a Distancia

- Aprendizaje basado en problemas (ABP)
- Estudio de casos
- Simulaciones
- Talleres
- Aprendizaje cooperativo

V. Evaluación

Modalidad presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	0 %
Consolidado 1	1	Semana 1 -4	Prueba de desarrollo	
C1	2	Semana 5-7	Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 8	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	25 %
Consolidado 2	3	Semana 9-12	Prueba de desarrollo	00 %
C2	4	Semana 13- 15	Prueba de desarrollo	20 %
Evaluación final EF	Todas las unidades	Semana 16	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	35 %
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad semipresencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	0 %	
Consolidado 1	1		Actividades virtuales	15 %	00 77
C1	I	Semana 1-3	Prueba de desarrollo	85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	25 %	%
Consolidado 2	3	Canagara F 7	Actividades virtuales	15 %	00 g/
C2	3	Semana 5-7	Prueba de desarrollo	85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	35 %	%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Educación a Distancia

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso
Evaluación de entrada	Prerrequisito	Primera sesión	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	0 %
Consolidado 1	1	Semana 2	Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 4	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	25 %
Consolidado 2	3	Semana 6	Prueba de desarrollo	20 %
Evaluación final EF	Todas las unidades	Semana 8	Planteamiento de ejercicios y solución de problemas / Prueba de desarrollo	35 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica:

- ✓ García, M. (2015). Matemática discreta para la computación: Nociones teóricas y problemas resueltos. (2.º ed.). Universidad de Jaén. https://bit.ly/2ZWuGLK
- ✓ Epp, S. (2012). Matemáticas discretas con aplicaciones. (4.º ed.). Cengage Learning. https://bit.ly/32RjzEN

Complementaria:

- ✓ Malva, A., Schwer, I., Cámara, V. y Fumero, Y. (2005). Matemática discreta: con aplicaciones a las ciencias de la programación y de la computación. 1ª ed. Argentina: Universidad Nacional Del Litoral.
- ✓ Matousek, J. y Nesetril, J. (2008). Invitación a la matemática discreta. 1ª ed. España: Reverté.
- ✓ Ralph, G. (1998). Matemáticas Discreta y Combinatoria. 3ª ed. México: Addison Wesley Iberoamericana S.A.